반응형
calculus_int_e_to_neg_x_square_gauss

Gaussian integration

ex2dx \int_{-\infty}^{\infty}{e^{-x^2}}dx

I=ex2dxI=ey2dyI2=ex2dxey2dy=ex2ey2dxdy=e(x2+y2)dxdy I = \int_{-\infty}^{\infty}{e^{-x^2}}dx \\ I = \int_{-\infty}^{\infty}{e^{-y^2}}dy \\ I^2 = \int_{-\infty}^{\infty}{e^{-x^2}}dx \int_{-\infty}^{\infty}{e^{-y^2}}dy \\ = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dx dy \\ = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy

극좌표계로 변경
x=rcosθ,y=rsinθdxdyrdrdθ x = r cos\theta , y=r sin\theta \\ dx dy \rightarrow r dr d\theta

I2=02π0er2rdrdθ I^2 = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} rdr d\theta
u=r2u = r^2 , du=2rdrdu=2rdr
0er2rdr=0eu12du=12[eu]0=12 \int_{0}^{\infty} e^{-r^2} rdr = \int_{0}^{\infty}e^{-u} \frac{1}{2} du\\ = \frac{1}{2}[-e^{-u}]_{0}^{\infty} = \frac{1}{2}

I2=02π0er2rdrdθ=02π12dθ=122π=π I^2 = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} rdr d\theta \\ = \int_{0}^{2\pi}\frac{1}{2}d\theta \\ = \frac{1}{2} 2\pi = \pi
I=ex2dx=π \therefore I = \int_{-\infty}^{\infty}{e^{-x^2}}dx = \sqrt{\pi}

Author
crazyj7@gmail.com
Written with StackEdit.

'Math' 카테고리의 다른 글

integral ln gamma  (0) 2019.08.01
integral ln sin  (0) 2019.08.01
적분 순서 치환방법 정리  (0) 2019.05.05
미분 곡률 테일러시리즈  (0) 2019.05.05
삼각함수 미적분 정리  (0) 2019.05.05

+ Recent posts