반응형
cal04

chain and product rule

sum rule

ddx(sin(x)+x2)=cos(x)+2xddx(g(x)+h(x))=ddxg(x)+ddxh(x) \frac d {dx} (sin(x)+x^2) = cos(x)+2x \\ \frac d {dx} ( g(x)+h(x) ) = \frac d {dx} g(x) + \frac d {dx} h(x) \\

  • 미분을 생각해 보면 함수의 합에서의 미분은 dx에 대해 df를 보면 된다.
  • f=g+h 라고 할 때, g 그래프 , h 그래프를 그렸을 때 dx는 일정한데, df는 dg+dh와 같기 때문에 두 함수 g, h의 미분의 합과 같게 된다.

product rule

f(x)=sin(x)x2 f(x) = sin(x) x^2
f(x)를 직사각형의 넓이라고 생각할 수 있다. 가로를 sin(x), 높이를 x^2.

  • 여기서 dx를 생각해 보자.
  • 늘어나는 넓이가 df
    df=sin(x)d(x2)+x2d(sin(x))+d(x2)d(sin(x)) df = sin(x) d(x^2) + x^2 d(sin(x))+d(x^2)d(sin(x))\\
  • 위 df에서 마지막항은 무시할 수 있다. (dx^2 꼴)
    f=ghdf=gdh+hdgddxf=gddxh+hddxgf=gh+hg f=gh \\ df = g dh + h dg\\ \frac d {dx} f = g\frac d {dx} h+h\frac d {dx} g \\ f' = g h' + h g'

function composition

g(x)=sin(x)h(x)=x2f(x)=g(h(x)) g(x) = sin(x) \\ h(x) = x^2 \\ f(x) = g(h(x))
위 에서 dx의 변화가 생긴다면, dh는 2xdx가 된다.
dh의 변화는 g입장에서 보면 dg = d sin(h)이며 cos(h) dh인 것이다.
dh를 다시 확장하면,
dg = cos(h) 2x dx
즉,
df = cos(x^2) 2x dx 가 된다.

  • Chain Rule
    ddxg(h(x))=dgdh(h(x))dhdx(x)ddxg(h(x))=dgdhdhdx \frac d {dx} g(h(x)) = \frac {dg}{dh}(h(x)) \frac {dh}{dx}(x) \\ \frac d {dx} g(h(x)) = \frac {dg}{dh} \frac {dh}{dx}

Author: crazyj7@gmail.com

지수의 도함수

M(t) = 2t2^t
매 초마다 2배씩 인구가 증가하는 함수는 위와 같다.
위 함수의 도함수를 보면, 1초 증가시 증가량이 2^t가 된다.
dM/dt=2t+12t1=2t dM/dt = \frac {2^{t+1}-2^t}{1}=2^t

  • 위 함수가 도함수 인가??? 저것은 dt가 1인 경우일 뿐.

  • dt \rightarrow 0 일때를 알아야 한다.
    dM/dt=2t+dt2tdt=2t2dt1dt dM/dt = \frac {2^{t+dt}-2^t}{dt}=2^t \frac {2^{dt}-1}{dt}
    위 형태에서 지수는 e 꼴로 변형할 수 있다.
    ab=elnab=eblna2h=ehln2dM/dt=2tehln21h=2t(1+h)ln21h=2tln2h+O(h2)h=2tln2 a^b = e^{ln a^b} = e^{b ln a} \\ 2^h = e^{hln2} \\ dM/dt =2^t\frac { e^{hln2} -1 } {h} \\ =2^t \frac { (1+h)^{ln2} -1 } {h} \\ =2^t \frac { ln2 *h+O(h^2) }{h} \\ =2^t ln2

  • 어쨋건 지수함수의 미분값은 자신(M)과 일정한 비례상수에 의해 비례한다.

  • 그리고 궁금한 것은 이 비례상수가 1인 경우에 해당되는 지수함수의 값은 무엇일까? “e”

  • 즉, 미분해서 자기자신이 되는 지수 함수는 e^x

    • eh1h=1\frac {e^h-1}{h}=1 이것이 e의 정의다.
      eh1h=1eh=h+1e=(1+h)1hh0 \frac {e^h-1}{h}=1\\ e^h= h+1 \\ e = (1+h)^\frac{1}{h}\\ h \rightarrow 0
    • 지수함수는 다 e꼴로 나타낼 수 있다.
      ax=exlna a^x = e^{x ln a}
  • 왜 e의 지수함수형태로 나타내는 것이 더 자연스러운가?

  • 자연계 현상에서는 규모가 변화율에 비례하고, 비례상수로써 일반화할 수 있다.

Author: crazyj7@gmail.com

implicit differentiation

음함수 미분.

  • ex
    x2+y2=522xdx+2ydy=0xdx=ydydydx=xy x^2+y^2=5^2 \\ 2xdx+2ydy = 0\\ xdx=-ydy\\ \frac {dy}{dx} = -\frac x y

x(t)2+y(t)2=52t2x(t)dxdt+2y(t)dydt=0xdxdt=ydydtdydx=xy x(t)^2+y(t)^2=5^2 \\ t에 대해 미분\\ 2x(t)\frac {dx}{dt}+2y(t)\frac {dy}{dt} = 0\\ x\frac {dx}{dt}=-y \frac {dy}{dt}\\ \frac {dy}{dx} = -\frac x y

  • ex
    sin(x)y2=xsin(x)2ydy+y2cos(x)dx=dxfinddydx sin(x)y^2=x \\ sin(x)2ydy+y^2cos(x)dx = dx \\ find \frac {dy}{dx}

  • ex
    y=ln(x)dydx=ddxln(x)x=eydx=eydydydx=ey=1ey=1x y=ln(x) \\ \frac {dy}{dx} = \frac {d}{dx}ln(x)\\ 원 함수를 다음과 같이 변경\\ x = e^y \\ dx = e^y dy \\ \frac {dy}{dx} = e^{-y} = \frac 1 {e^y} = \frac 1 x

Formal derivative definition

dfdx(2)=limh0f(2+h)f(2)h \frac {df}{dx}(2) = lim_{h \to 0} \frac {f(2+h)-f(2)}{h}

  • 여기서 h는 dx로 무한히 작다를 의미하는 것은 아니다?

앱실론/델타

입력범위크기의 조절로 출력범위의 크기를 원하는 만큼 작게 만들 수 있다.
출력값에서 떨어진 거리 엡실론.
입력값에서 떨어진 거리 델타.
엡실론을 아무리 줄여도 델타는 존재한다!!!

로피탈

L’Hopital’s rule

limxaf(x)g(x)=ddxf(a)ddxg(a) lim_{x \to a} \frac {f(x)}{g(x)}\\ =\frac {\frac d {dx} f(a) } {\frac d {dx} g(a)}

limx0sinπxx21=ddxsinπxddxx21 lim_{x \to 0} \frac {sin \pi x}{ x^2-1}\\ =\frac {\frac d {dx} sin \pi x } {\frac d {dx} x^2-1 }

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #1  (1) 2020.08.27
Derivative100 [91-100]  (0) 2019.12.12
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
반응형
cal01

미적분학의 본질

원의 넓이

동심원으로 일정한 두께로 잘라낸다.
하나의 동심원을 펴면 직사각형에 가깝고 넓이는 두께를 dr, 길이는 2π\pir

Area 2πrdr 하나의 링 Area \approx\ 2\pi r dr
좌표축에 x축을 r로 보고, 0부터 3까지의 범위로 각 r에 해당할때 링의 길이를 세로축 y로 놓으면 직선 y=2π\pir 이 그려진다.
각 링을 해당 r 위치에 직사각형으로 놓으면 넓이는 dr. dr이 0에 가까울수록 (잘게 썰수록) 삼각형의 넓이가 된다.
즉, 면적은 이 그래프의 삼각형의 넓이가 되므로,
πr2\pi r^2이 된다.

  • 원의 넓이, 자동차가 움직인 거리. y=x2y=x^2그래프 아래의 넓이 등 복잡한 문제를 작게 쪼개서 합으로 풀 수 있다.
  • x의 변화를 dx (아주 작은 크기)로 보고, 그 때의 넓이 변화를 dA라고 하자.
  • dA를 x 도메인 범위로 확장을하여 합치면 A 전체 넓이가 된다.

y=x2xxdxdxdAdAdxx2ifdx=0.001,atx=3A(3.001)A(3)0.00132,dx. y=x^2 그래프 아래의 넓이 \\ x축 x의 작은 변화 dx에 대해\\ dx에 해당되는 넓이를 dA\\ \frac {dA}{dx} \approx x^2 \\ if \quad dx=0.001, at \quad x=3 \\ \frac {A(3.001)-A(3)}{0.001} \approx 3^2 \\ 즉, dx가 작을 수록 근사값이 실제값에 가까워진다.



f(x)A(x)=Integraloff(x)dA=dx.f(x).dx.dAf(x)dxdAdxf(x)dx0. f(x)그래프의 밑넓이 A(x) \\ = Integral \quad of \quad f(x) \\ dA = dx변화에서 넓이 변화. 높이는 f(x). 가로는 dx. \\ dA \approx f(x) dx \\ \frac {dA}{dx} \approx f(x) \\ dx \rightarrow 0 점점 더 정확해짐.

  • 위에서 f(x), dAdx\frac {dA}{dx}가 A의 도함수이다.
  • dx가 0에 가까울 수록 어떤 비율이 된다는 의미. 접선의 기울기. 변화율.

도함수의 모순

흔히 도함수를 순간변화율이라고 하는데, 순간은 시간이 없기 때문에 변화가 없다. 따라서 이 말은 모순이다 .

s(t)를 자동차가 t시각에 위치한 지점.(이동 위치)라고 하고, x축을 t로 y축을 s로 한다.
v(t)는 자동차의 t시각에 속력을 나타냄.
여기서 v(t)는?? t에서의 속력.
v(t)=dsdtdsdt(t)=s(t+dt)s(t)dt v(t) = \frac {ds}{dt}\\ \frac {ds}{dt}(t) = \frac {s(t+dt)-s(t)}{dt}

  • 문제는 속력을 재려면 두 시점이 필요하다. 정지된 사진 한 장으로는 속력을 잴 수 없다!!!
  • dt를 아주 작은 구간으로 본다.
  • t에서의 미분은 두 시점의 기울기가 아니라 특정한 점의 접선의 기울기 이다.
  • dt는 무한히 작다는 것도 아니고, 0이라는 것도 아니다!!!
  • 순간 변화율은 잘못된 표현이고, 한 점 근처의 변화율을 나타내는 최적의 상수 근사값이라고 생각할 수 있다.
  • dt는 t에서 실질적 크기를 갖는 매우 작은 변화를 의미한다.

예제

s(t)=t3dsdt(t)=s(t+dt)s(t)dt=(t+dt)3t3dt=t3+3t2dt+O(dt2)t3dt=3t2+O(dt)=3t2 s(t) = t^3 \\ \frac {ds}{dt}(t) = \frac {s(t+dt)-s(t)}{dt}\\ =\frac {(t+dt)^3-t^3}{dt}\\ =\frac {t^3+3t^2dt+O(dt^2)-t^3} {dt}\\ =3t^2+O(dt)=3t^2

기하를 통해 본 미분 공식

f(x)=x^2
한 변 길이가 x인 정사각형의 넓이로 볼 수 있다.
여기서 변의 길이를 dx 만큼 증가시키면…
df (증가량) = 2x dx + (dx)^2 이 된다.
df/dx = 2x+O(dx)
dx는 0가 가까우므로 의미있는 값은 2x가 된다.

  • dx에 대해서 df를 관측할 경우는 의미있는 부분은 dx까지이고 (dx)^2부터는 무시할 수 있다. (0에 수렴하여 의미없는 값이 된다.)

  • 아래 df에서 dx^2를 봐라.
    f(x)=xn.df(x)dx=(x+dx)nxndx(x+dx)n=xn+nxn1dx+O(dx2)O(dx2)!df(x)dx=xn+nxn1dxxndx=nxn1.df(x)dx=xn+nxn1dx+O(dx2)xndx=nxn1+O(dx)(dx0)df(x)dx=nxn1 f(x)=x^n의 미분. \\ \frac {df(x)}{dx}=\frac {(x+dx)^n-x^n}{dx}\\ (x+dx)^n=x^n+nx^{n-1}dx+O(dx^2) \\ O(dx^2)는 무시할 수 있다!\\ \frac {df(x)}{dx}=\frac {x^n+nx^{n-1}dx-x^n}{dx}= nx^{n-1} \\ \quad \\ 왜 무시해도 되냐면 아래와 같다. \\ \frac {df(x)}{dx}=\frac {x^n+nx^{n-1}dx+O(dx^2)-x^n}{dx}=nx^{n-1}+O(dx) \\ (dx \rightarrow 0) \\ \frac {df(x)}{dx}=nx^{n-1}

  • f(x)=1xf(x)=\frac 1 x 에서 미분을 해 보자. 기하학적으로 보면, 넓이가 1인 직사각형을 생각하면 된다. 가로 길이를 x, 높이는 1/x가 된다.

    • 이 때 dx에 대해 df를 보면 된다. x가 dx 증가할 때, 가로 길이는 dx가 증가하지만 세로 길이는 d(1/x)만큼 감소한다. 그 양쪽 증감 넓이는 동일해야 한다.
      Area(+)=(1x)dxArea()=xd(1x)(1x)dx=x(1x1x+dx)dxx=1xx+dx=dxx+dx1x=1x+dx,dx0.. Area(+) = (\frac 1 x) dx \\ Area(-) = x d(\frac 1 x) \\ (\frac 1 x)dx = x ( \frac 1 x - \frac1{x+dx})\\ \frac {dx} x = 1 - \frac x {x+dx} = \frac {dx} {x+dx} \\ \frac 1 x = \frac 1 {x+dx} \\ 즉, dx가 0으로 수렴. 위 식은 맞다.
    • df/dx
      dfdx=f(x+dx)f(x)dx=1x+dx1xdx=dxx(x+dx)dx=1x2+xdx=1x2 \frac {df}{dx} = \frac {f(x+dx)-f(x)}{dx} = \frac{ \frac 1 {x+dx} - \frac 1 x } {dx}\\ = \frac{ \frac{-dx}{x(x+dx)} }{dx} = -\frac {1}{x^2+xdx} \\ = - \frac 1 {x^2}

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #2  (0) 2020.08.27
Derivative100 [91-100]  (0) 2019.12.12
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
반응형
derivative_br_91

91. ddxx3,definition\frac{d}{dx}x^3, definition

ddxx3=limh0(x+h)3x3h=3hx2+3h2x+h3h=limh03x2+3hx+h2=3x2 \begin{aligned} &\frac{d}{dx}x^3\\ &=\lim_{h\to0}\frac{(x+h)^3-x^3}{h}=\frac{3hx^2+3h^2x+h^3}{h}\\ &=\lim_{h\to0}3x^2+3hx+h^2=3x^2 \end{aligned}


92. ddx3x+1,def.\frac{d}{dx} \sqrt{3x+1}, def.

ddx3x+1=limh03(x+h)+13x+1h=limh0(3x+3h+1)(3x+1)h(3x+3h+1+3x+1)=limh03(3x+3h+1+3x+1)=323x+1 \begin{aligned} &\frac{d}{dx} \sqrt{3x+1}\\ &=\lim_{h\to0} \frac{\sqrt{3(x+h)+1}-\sqrt{3x+1}}{h}\\ &=\lim_{h\to0} \frac{(3x+3h+1)-(3x+1)}{h(\sqrt{3x+3h+1}+\sqrt{3x+1})}\\ &=\lim_{h\to0}\frac{3}{(\sqrt{3x+3h+1}+\sqrt{3x+1})}\\ &=\frac{3}{2\sqrt{3x+1}} \end{aligned}


93. ddx12x+5,def.\frac{d}{dx} \frac{1}{2x+5}, def.

ddx12x+5=limh012(x+h)+512x+5h=2h(2x+2h+5)(2x+5)h=limh02(2x+2h+5)(2x+5)=2(2x+5)2 \begin{aligned} &\frac{d}{dx} \frac{1}{2x+5}\\ &=\lim_{h\to0} \frac{\frac{1}{2(x+h)+5}-\frac{1}{2x+5}}{h}=\frac{ \frac{-2h}{(2x+2h+5)(2x+5)}}{h}\\ &=\lim_{h\to0} -\frac{2}{(2x+2h+5)(2x+5)}\\ &=-\frac{2}{(2x+5)^2} \end{aligned}


94. ddx1x2,def.\frac{d}{dx}\frac{1}{x^2}, def.

ddx1x2=limh01(x+h)21x2h=2xhh2x2(x+h)2h=2xhx2(x+h)2=2xx4=2x3 \begin{aligned} &\frac{d}{dx}\frac{1}{x^2}\\ &=\lim_{h\to0} \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}= \frac{\frac{-2xh-h^2}{x^2(x+h)^2}}{h}=\frac{-2x-h}{x^2(x+h)^2}\\ &=\frac{-2x}{x^4}=-\frac{2}{x^3} \end{aligned}


95. ddxsinx,def.\frac{d}{dx}sinx, def.

ddxsinx=limh0sin(x+h)sin(x)h=limh0sin(x)cos(h)+cos(x)sin(h)sin(x)h=limh0sinx(cos(h)1)h+cos(x)sin(h)hcos(h)=1h22!+h44!...limh0cos(h)1h=hc+h3c+..=O(h)=0sin(h)=hh33!+...limh0sin(h)h=1O(h2)=1=sin(x)0+cos(x)1=cos(x) \begin{aligned} &\frac{d}{dx} sinx=\lim_{h\to0} \frac{sin(x+h)-sin(x)}{h}\\ &=\lim_{h\to0} \frac{ sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h}\\ &=\lim_{h\to0} \frac{sinx(cos(h)-1)}{h}+cos(x)\frac{sin(h)}{h}\\ & cos(h)=1-\frac{h^2}{2!}+\frac{h^4}{4!}-...\\ & \lim_{h\to0} \frac{cos(h)-1}{h}=hc+h^3c+..=O(h)=0 \\ & sin(h)=h-\frac{h^3}{3!}+...\\ & \lim_{h\to0} \frac{sin(h)}{h}=1-O(h^2)=1\\ & \therefore =sin(x)0+cos(x)1=cos(x) \end{aligned}


96. ddxsecx,def.\frac{d}{dx}secx, def.

ddxsec(x)=limh0sec(x+h)sec(x)h=limh01/cos(x+h)1/cos(x)h=cos(x)cos(x+h)cos(x+h)cos(x)h=cos(x)cos(x)cos(h)+sin(x)sin(h)(cos(x)cos(h)sin(x)sin(h))cos(x)h=1cos(h)+tan(x)sin(h)h(cos(x)cos(h)sin(x)sin(h))=lim1cos(x)cos(h)sin(x)sin(h)(lim1cos(h)h+limtan(x)sin(h)h)=1cos(x)(0+tan(x))=sec(x)tan(x) \begin{aligned} &\frac{d}{dx}sec(x)=\lim_{h\to0}\frac{\sec(x+h)-\sec(x)}{h}\\ &=\lim_{h\to0}\frac{1/\cos(x+h)-1/\cos(x)}{h}=\frac{cos(x)-cos(x+h)}{cos(x+h)cos(x)h}\\ &=\frac{cos(x)-cos(x)cos(h)+sin(x)sin(h)}{(cos(x)cos(h)-sin(x)sin(h))cos(x)h}\\ &=\frac{1-cos(h)+tan(x)sin(h)}{h(cos(x)cos(h)-sin(x)sin(h))}\\ &=\lim \frac{1}{cos(x)cos(h)-sin(x)sin(h)} (\lim \frac{1-cos(h)}{h}+\lim \frac{tan(x)sin(h)}{h}) \\ &=\frac{1}{cos(x)}(0+tan(x))=sec(x)tan(x) \end{aligned}


97. ddxarcsinx,def.\frac{d}{dx}arcsinx, def.

ddxarcsinx=limh0arcsin(x+h)arcsin(x)h \begin{aligned} &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ \end{aligned}

fail

ddxarcsinx=limh0arcsin(x+h)arcsin(x)hsin(ab)=sinacosbsinbcosaarcsinsin(ab)=arcsin(sinacosbsinbcosa)ab=arcsin(sinacosbsinbcosa)a=arcsin(x+h),b=arcsin(x)arcsin(x+h)arcsin(x)=arcsin(sin(arcsin(x+h))cos(arcsin(x))sin(arcsin(x))cos(arcsin(x+h)))=arcsin((x+h)cos(arcsin(x))xcos(arcsin(x+h)))(cos(x)=1sin2(x))We know,limx0sinxx=1,limx0sin(x)=limx0xSo,limx0sin1(x)=limx0x=arcsin((x+h)1x2x1(x+h)2)ddxarcsinx=limh0arcsin(x+h)arcsin(x)h=limh0arcsin((x+h)1x2x1(x+h)2)h=limh0(x+h)1x2x1(x+h)2h=limh0(x+h)2(1x2)x2(1(x+h)2)h((x+h)1x2+x1(x+h)2)Numerator=(x+h)2x2(x+h)2x2+x2(x+h)2Numerator=(x+h)2x2=2xh+h2=limh02x+h(x+h)1x2+x1(x+h)2=2xx1x2+x1x2=2x2x1x2=11x2 \begin{aligned} &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ & sin(a-b) = sinacosb-sinbcosa\\ & \arcsin {sin(a-b)} = \arcsin {(sinacosb-sinbcosa)}\\ & a-b = \arcsin {(sinacosb-sinbcosa)}\\ & a=arcsin(x+h), b=arcsin(x)\\ &arcsin(x+h)-arcsin(x) = arcsin(sin(arcsin(x+h))cos(arcsin(x))-sin(arcsin(x))cos(arcsin(x+h)))\\ &=arcsin((x+h)cos(arcsin(x))-xcos(arcsin(x+h)))\\ & (cos(x) = \sqrt {1-sin^2(x)}) \\ & \text{We know,} \lim_{x\to0} \frac{sin x}{x}=1, \lim _{x\to0} sin(x) = \lim_{x\to0} x\\ &So, \lim_{x\to0} sin^{-1}(x)=\lim_{x\to0}x &=arcsin( (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} )\\ &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ &=\lim_{h\to0} \frac{arcsin( (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} )}{h}\\ &=\lim_{h\to0} \frac{ (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} }{h} \\ &=\lim_{h\to0} \frac{ (x+h)^2(1-x^2)-x^2(1-(x+h)^2)} {h ((x+h) \sqrt{1-x^2}+x\sqrt{1-(x+h)^2} )} \\ &Numerator=(x+h)^2-x^2(x+h)^2-x^2+x^2(x+h)^2\\ &Numerator=(x+h)^2-x^2=2xh+h^2\\ &=\lim_{h\to0} \frac{ 2x+h} {(x+h) \sqrt{1-x^2}+x\sqrt{1-(x+h)^2} } \\ &=\frac{2x}{x\sqrt{1-x^2}+x\sqrt{1-x^2}}=\frac{2x}{2x\sqrt{1-x^2}}\\ &=\frac{1}{\sqrt{1-x^2}} \end{aligned}


98. ddxarctanx,def.\frac{d}{dx}arctanx, def.

Try like upper case, lim tan(x)/x = 1, atan(x)/x=1

ddxarctan(x)=limh0arctan(x+h)arctan(x)htan(ab)=tan(a)tan(b)1+tan(a)tan(b)ab=arctan(tan(a)tan(b)1+tan(a)tan(b))Numerator=arctan(x+h)arctan(x)N=arctan(tan(arctan(x+h))tan(arctan(x))1+tan(arctan(x+h))tan(arctan(x)))=arctan(x+hx1+(x+h)x)=artan(h1+x2+hx)So,ddxarctan(x)=limh0arctan(x+h)arctan(x)h=limh0artan(h1+x2+hx)h=limh011+x2+hx=11+x2 \begin{aligned} &\frac{d}{dx}arctan(x)=\lim_{h\to0} \frac{arctan(x+h)-arctan(x)}{h}\\ & tan(a-b)=\frac{tan(a)-tan(b)}{1+tan(a)tan(b)}\\ & a-b = arctan(\frac{tan(a)-tan(b)}{1+tan(a)tan(b)})\\ &Numerator=arctan(x+h)-arctan(x)\\ &N=arctan( \frac{tan(arctan(x+h))-tan(arctan(x))}{1+tan(arctan(x+h))tan(arctan(x))} )\\ &=arctan( \frac{x+h-x}{1+(x+h)x} )=artan(\frac{h}{1+x^2+hx})\\ &So, \\ &\frac{d}{dx}arctan(x)=\lim_{h\to0} \frac{arctan(x+h)-arctan(x)}{h}\\ &=\lim_{h\to0} \frac{artan(\frac{h}{1+x^2+hx})}{h}\\ &=\lim_{h\to0} \frac{1}{1+x^2+hx}=\frac{1}{1+x^2}\\ \end{aligned}


99. ddxf(x)g(x),def.\frac{d}{dx}f(x)g(x), def.

ddxf(x)g(x)=limh0f(x+h)g(x+h)f(x)g(x)h=limh0f(x+h)g(x+h)f(x)g(x)g(x+h)f(x)+g(x+h)f(x)h=limh0g(x+h)(f(x+h)f(x))+f(x)(g(x+h)g(x))h=limh0g(x+h)f(x+h)f(x)h+f(x)g(x+h)g(x)h=g(x)f(x)+f(x)g(x)=f(x)g(x)+f(x)g(x) \begin{aligned} &\frac{d}{dx}f(x)g(x)=\lim_{h\to0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}\\ &=\lim_{h\to0}\frac{f(x+h)g(x+h)-f(x)g(x)-g(x+h)f(x)+g(x+h)f(x)}{h}\\ &=\lim_{h\to0} \frac{g(x+h)(f(x+h)-f(x))+f(x)(g(x+h)-g(x))}{h}\\ &=\lim_{h\to0} g(x+h)\frac{f(x+h)-f(x)}{h}+f(x)\frac{g(x+h)-g(x)}{h}\\ &=g(x)f'(x)+f(x)g'(x)=f'(x)g(x)+f(x)g'(x) \end{aligned}


100. ddxf(x)g(x),def.\frac{d}{dx} \frac{f(x)}{g(x)}, def.

ddxf(x)g(x)=limh0f(x+h)g(x+h)f(x)g(x)h=f(x+h)g(x)f(x)g(x+h)g(x)g(x+h)h=f(x+h)g(x)f(x)g(x+h)g(x)f(x)+g(x)f(x)hg(x)g(x+h)=g(x)(f(x+h)f(x))f(x)(g(x+h)g(x))hg(x)g(x+h)=g(x)f(x)f(x)g(x)g(x)2 \begin{aligned} &\frac{d}{dx} \frac{f(x)}{g(x)}=\lim_{h\to0}\frac{ \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} =\frac{ \frac{f(x+h)g(x)-f(x)g(x+h)}{g(x)g(x+h)} }{h}\\ &=\frac{ f(x+h)g(x)-f(x)g(x+h)-g(x)f(x)+g(x)f(x)}{hg(x)g(x+h)}\\ &=\frac{g(x)(f(x+h)-f(x))-f(x)(g(x+h)-g(x))}{hg(x)g(x+h)}\\ &=\frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2} \end{aligned}


101. ddxxxx\frac{d}{dx} x^{{x}^{x}}

First,ddxxxy=xx,lny=xlnx,(1/y)y=lnx+x(1/x)y=ylnx+y=xxlnx+xx \frac{d}{dx}x^x\\ y=x^x, lny=xlnx, (1/y)y'=lnx+x(1/x)\\ y'=ylnx+y=x^xlnx+x^x
Second,
ddxxxxy=xxxlny=xxln(x)1yy=(xxlnx+xx)ln(x)+xx1x=xx((lnx)2+ln(x)+1x)y=xxxxx((lnx)2+ln(x)+1x) \begin{aligned} &\frac{d}{dx} x^{x^{x}}\\ &y=x^{x^{x}} \\ &ln y = x^x ln(x) \\ &\frac{1}{y} y' = (x^xlnx+x^x)ln(x)+x^x\frac{1}{x}\\ &=x^x((lnx)^2+ln(x)+\frac{1}{x})\\ &y'=x^{x^x}x^x((lnx)^2+ln(x)+\frac{1}{x})\\ \end{aligned}


The END

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #2  (0) 2020.08.27
미적분학의 본질 #1  (1) 2020.08.27
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
반응형
derivative_br_81

81. ddxexsinhx\frac{d}{dx}e^x sinhx

ddxexsinhx=exsinhx+excoshx=ex(sinhx+coshx)=ex(2ex2)=e2x \begin{aligned} &\frac{d}{dx}e^x sinhx\\ &=e^xsinhx+e^xcoshx=e^x(sinhx+coshx)\\ &=e^x(\frac{2e^x}{2})=e^{2x} \end{aligned}


82. ddxsech(1x)\frac{d}{dx}sech(\frac{1}{x})

ddxsech(1x)sech(x)=1/cosh(x),D(sech(x))=sinh(x)/cosh2(x)=sech(x)tanh(x)ddxsech(1x)=sinh(1/x)/cosh2(1/x)(1/x2)=sinh(1/x)x2cosh2(1/x)=sech(1x)tanh(1x)x2 \begin{aligned} &\frac{d}{dx}sech(\frac{1}{x})\\ & sech (x)=1/cosh(x), D(sech(x))=-sinh(x)/cosh^2(x)\\ &=-sech(x)tanh(x)\\ &\frac{d}{dx}sech(\frac{1}{x})=-sinh(1/x)/cosh^2(1/x)(-1/x^2)\\ &=\frac{sinh(1/x)}{x^2cosh^2(1/x)}=\frac{sech(\frac{1}{x})tanh(\frac{1}{x})}{x^2}\\ \end{aligned}


83. ddxcosh(lnx))\frac{d}{dx}cosh(lnx))

ddxcosh(lnx)=sinh(lnx)x=elnxelnx2x=x(1/x)2x=x212x2 \begin{aligned} &\frac{d}{dx}cosh(lnx)=\frac{sinh(lnx)}{x}=\frac{e^{lnx}-e^{-lnx}}{2x}\\ &=\frac{x-(1/x)}{2x}=\frac{x^2-1}{2x^2}\\ \end{aligned}


84. ddxln(coshx)\frac{d}{dx}ln(coshx)

ddxln(coshx)=sinhxcoshx=tanh(x) \begin{aligned} &\frac{d}{dx}ln(coshx)=\frac{sinhx}{coshx}=tanh(x)\\ \end{aligned}


85. ddxsinhx1+coshx\frac{d}{dx}\frac{sinhx}{1+coshx}

ddxsinhx1+coshx=coshx(1+coshx)sinhxsinhx1+cosh2x+2cosh(x)=coshx+cosh2xsinh2x(1+coshx)2=1+coshx(1+coshx)2=11+coshx \begin{aligned} &\frac{d}{dx}\frac{sinhx}{1+coshx}=\frac{coshx(1+coshx)-sinhxsinhx}{1+cosh^2x+2cosh(x)}\\ &=\frac{coshx+cosh^2x-sinh^2x}{(1+coshx)^2}=\frac{1+coshx}{(1+coshx)^2}\\ &=\frac{1}{1+coshx} \end{aligned}


86. ddxarctanh(cosx)\frac{d}{dx}arctanh(cosx)

ddxarctanh(cosx)D(arctanh(x))=11x2y=arctanh(x),x=tanh(y),dx=sech2(y)dydy/dx=1/sech2(y)=cosh2(y)=1(1/cosh2(y))=1(cosh2(y)sinh2(y))/cosh2(y)=11tanh2(y)=11x2ddxarctanh(cosx)=sinx1cos2x=sin(x)sin2(x)=csc(x) \begin{aligned} &\frac{d}{dx}arctanh(cosx)\\ &D(arctanh(x)) = \frac{1}{1-x^2}\\ &y=arctanh(x), x=tanh(y), dx=sech^2(y)dy\\ &dy/dx = 1/sech^2(y)=cosh^2(y)=\frac{1}{(1/cosh^2(y))}\\ &=\frac{1}{( cosh^2(y)-sinh^2(y))/cosh^2(y)}=\frac{1}{1-tanh^2(y)}\\ &=\frac{1}{1-x^2}\\ &\frac{d}{dx}arctanh(cosx)=-\frac{sinx}{1-cos^2x}\\ &=-\frac{sin(x)}{sin^2(x)}=-csc(x)\\ \end{aligned}


87. ddx(x)(arctanhx)+ln((1x2))\frac{d}{dx}(x)(arctanhx)+ln(\sqrt{(1-x^2}))

ddx(x)(arctanhx)+ln(1x2)=arctanh(x)+x11x2+11x22x21x2=arctanh(x)+x1x2x1x2=arctanh(x) \begin{aligned} &\frac{d}{dx}(x)(arctanhx)+ln(\sqrt{1-x^2})\\ &=arctanh(x)+x\frac{1}{1-x^2}+\frac{1}{\sqrt{1-x^2}}\frac{-2x}{2\sqrt{1-x^2}}\\ &=arctanh(x)+\frac{x}{1-x^2}-\frac{x}{1-x^2}\\ &=arctanh(x) \end{aligned}


88. ddxarcsinh(tanx)\frac{d}{dx}arcsinh(tanx)

ddxarcsinh(tanx)=11+tan2xsec2x=sec2xsecx=sec(x) \begin{aligned} &\frac{d}{dx}arcsinh(tanx)\\ &=\frac{1}{\sqrt{1+tan^2x}}sec^2x=\frac{sec^2x}{sec x}\\ &=sec(x) & \end{aligned}


89. ddxarcsin(tanhx)\frac{d}{dx}arcsin(tanhx)

ddxarcsin(tanhx)=11tanh2xsech2x1tanh2x=cosh2xsinh2xcosh2x=sech2x=sech2xsech2x=sech(x) \begin{aligned} &\frac{d}{dx}arcsin(tanhx)\\ &=\frac{1}{\sqrt{1-tanh^2x}} sech^2x\\ &1-tanh^2x = \frac{cosh^2x-sinh^2x}{cosh^2x}=sech^2x\\ &=\frac{sech^2x}{\sqrt {sech^2x} }=sech(x) \end{aligned}


90. ddxarctanhx1x2\frac{d}{dx} \frac{arctanhx}{1-x^2}

ddxarctanhx1x2=11x2(1x2)arctanh(x)(2x)(1x2)2=1+2xarctanh(x)(1x2)2 \begin{aligned} &\frac{d}{dx} \frac{arctanhx}{1-x^2}\\ &=\frac{\frac{1}{1-x^2}(1-x^2)-arctanh(x)(-2x)}{(1-x^2)^2} \\ &=\frac{1+2x arctanh(x)}{(1-x^2)^2} \\ \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #1  (1) 2020.08.27
Derivative100 [91-100]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18
반응형
derivative_br_71

71. ddxarctan(2x+3)\frac{d}{dx}arctan(2x+3)

ddxarctan(2x+3)=11+(2x+3)2(2x+3)=24x2+12x+10=12x2+6x+5 \begin{aligned} &\frac{d}{dx}arctan(2x+3)\\ &=\frac{1}{1+(2x+3)^2}(2x+3)'\\ &=\frac{2}{4x^2+12x+10}=\frac{1}{2x^2+6x+5} \end{aligned}


72. ddxcot4(2x)\frac{d}{dx}cot^4(2x)

ddxcot4(2x)=4cot3(2x)(cot(2x))=4cot3(2x)(csc2(2x))(2x)=8cot3(2x)csc2(2x) \begin{aligned} &\frac{d}{dx}cot^4(2x)\\ &=4cot^3(2x)(cot(2x))'=4cot^3(2x)(-csc^2(2x))(2x)'\\ &=-8cot^3(2x)csc^2(2x) \end{aligned}


73. ddxx21+1x\frac{d}{dx}\frac{x^2}{1+\frac{1}{x}}

ddxx21+1x=ddxx2x+1x=ddxx3x+1=3x2(x+1)x3(x+1)2=2x3+3x2(x+1)2 \begin{aligned} &\frac{d}{dx} \frac{x^2}{1+\frac{1}{x}}=\frac{d}{dx} \frac{x^2}{\frac{x+1}{x}}=\frac{d}{dx} \frac{x^3}{x+1}\\ &=\frac{3x^2(x+1)-x^3}{(x+1)^2}=\frac{2x^3+3x^2}{(x+1)^2} \end{aligned}


74. ddxex/(1+x2)\frac{d}{dx}e^{x/(1+x^2)}

ddxex1+x2=ex1+x2(x1+x2)=ex1+x2(1+x2)x(2x)(1+x2)2=ex1+x21x2(1+x2)2 \begin{aligned} &\frac{d}{dx}e^{\frac{x}{1+x^2}}=e^{\frac{x}{1+x^2}} (\frac{x}{1+x^2})'\\ &=e^{\frac{x}{1+x^2}} \frac{(1+x^2)-x(2x)}{(1+x^2)^2}\\ &=e^{\frac{x}{1+x^2}} \frac{1-x^2}{(1+x^2)^2}\\ \end{aligned}


75. ddx(arcsinx)3\frac{d}{dx}(arcsinx)^3

ddx(arcsinx)3=3(arcsinx)211x2=3(sin1x)21x2 \begin{aligned} &\frac{d}{dx}(arcsinx)^3=3(arcsinx)^2\frac{1}{\sqrt{1-x^2}}\\ &=\frac{3(sin^{-1}x)^2}{\sqrt{1-x^2}} \end{aligned}


76. ddx12sec2(x)ln(secx)\frac{d}{dx}\frac{1}{2} sec^2(x) – ln(secx)

ddx12sec2(x)ln(secx)=sec(x)sec(x)tan(x)1sec(x)sec(x)tan(x)=sec2(x)tan(x)tan(x)=(sec2x1)tanx=tan3x \begin{aligned} &\frac{d}{dx}\frac{1}{2} sec^2(x) – ln(secx)\\ &=sec(x)sec(x)tan(x)-\frac{1}{sec(x)}sec(x)tan(x)\\ &=sec^2(x)tan(x)-tan(x)=(sec^2x-1)tanx\\ &=tan^3x \end{aligned}


77. ddxln(ln(lnx)))\frac{d}{dx}ln(ln(lnx)))

ddxln(ln(lnx)))=1ln(ln(x))(ln(ln(x)))=1ln(ln(x))1ln(x)(ln(x))=1xln(x)ln(ln(x)) \begin{aligned} &\frac{d}{dx}ln(ln(lnx)))\\ &=\frac{1}{ln(ln(x))}(ln(ln(x)))'=\frac{1}{ln(ln(x))} \frac{1}{ln(x)}(ln(x))'\\ &=\frac{1}{xln(x)ln(ln(x))} \end{aligned}


78. ddxπ3\frac{d}{dx}\pi^3

ddxπ3=0 \begin{aligned} &\frac{d}{dx}\pi^3=0\\ \end{aligned}


79. ddxln[x+1+x2]\frac{d}{dx}ln[x+\sqrt{1+x^2}]

ddxln[x+1+x2]=1x+1+x2(1+2x21+x2)=1x+1+x21+x2+x1+x2=11+x2 \begin{aligned} &\frac{d}{dx}ln[x+\sqrt{1+x^2}]\\ &=\frac{1}{x+\sqrt{1+x^2}}(1+\frac{2x}{2\sqrt{1+x^2}})\\ &=\frac{1}{x+\sqrt{1+x^2}} \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}\\ &=\frac{1}{\sqrt{1+x^2}} \end{aligned}


80. ddxarcsinh(x)\frac{d}{dx}arcsinh(x)

ddxarcsinh(x)=11+x2y=arcsinh(x),x=sinh(y)=eyey22x=eyey2dx=eydy+eydy=dy(ey+ey)dydx=2ey+ey=1coshy(cosh2xsinh2x=1,coshx=1+sinh2x)1coshy=11+sinh2y=11+(eyey2)2=11+(2x2)2=11+x2Alt.dydx=2ey+eyx2=e2y+e2y24=e2y+e2y+241x2+1=(ey+ey2)2dydx=11+x2 \begin{aligned} &\frac{d}{dx}arcsinh(x)\\ &=\frac{1}{\sqrt{1+x^2}}\\ & y=arcsinh(x), x=sinh(y)=\frac{e^y-e^{-y}}{2}\\ & 2x=e^y-e^{-y} \\ & 2dx = e^ydy+e^{-y}dy=dy(e^y+e^{-y})\\ & \frac{dy}{dx}=\frac{2}{e^y+e^{-y}}=\frac{1}{coshy}\\ &(cosh^2x-sinh^2x = 1, coshx=\sqrt{1+sinh^2x})\\ &\frac{1}{coshy}=\frac{1}{\sqrt{1+sinh^2y}}=\frac{1}{\sqrt{1+(\frac{e^y-e^{-y}}{2})^2}}\\ &=\frac{1}{\sqrt{1+(\frac{2x}{2})^2}}=\frac{1}{\sqrt{1+x^2}}\\ &\\ & Alt.\\ & \frac{dy}{dx}=\frac{2}{e^y+e^{-y}}\\ & x^2=\frac{e^{2y}+e^{-2y}-2}{4}=\frac{e^{2y}+e^{-2y}+2}{4}-1\\ & x^2+1 = (\frac{e^y+e^{-y}}{2})^2\\ & \frac{dy}{dx}=\frac{1}{\sqrt{1+x^2}} \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Derivative100 [91-100]  (0) 2019.12.12
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18
D operator  (0) 2019.11.07
반응형
derivative_br_61

61. ddxx1x22+arcsinx2\frac{d}{dx} \frac{x\sqrt{1-x^2}}{2} + \frac{arcsinx}{2}

ddxx1x22+arcsinx2=12(1x2+x2x21x2+11x2)=1x2x2+121x2=22x221x2=1x21x2=1x2 \begin{aligned} &\frac{d}{dx}\frac{x\sqrt{1-x^2}}{2} + \frac{arcsinx}{2}\\ &=\frac{1}{2}(\sqrt{1-x^2}+x\frac{-2x}{2\sqrt{1-x^2}} +\frac{1}{\sqrt{1-x^2}})\\ &=\frac{1-x^2-x^2+1}{2\sqrt{1-x^2}}=\frac{2-2x^2}{2\sqrt{1-x^2}}\\ &=\frac{1-x^2}{\sqrt{1-x^2}}=\sqrt{1-x^2} \end{aligned}


62. ddxsinxcosxsinx+cosx\frac{d}{dx} \frac{sinx-cosx}{sinx+cosx}

ddxsinxcosxsinx+cosx=(cosx+sinx)(sinx+cosx)(sinxcosx)(cosxsinx)(1+2sinxcosx)=(sinx+cosx)2+(sinxcosx)2(sinx+cosx)2=1+2sinxcosx+12sinxcosx1+2sinxcosx=21+sin(2x) \begin{aligned} &\frac{d}{dx} \frac{sinx-cosx}{sinx+cosx}\\ &=\frac{(cosx+sinx)(sinx+cosx)-(sinx-cosx)(cosx-sinx)}{(1+2sinxcosx)}\\ &=\frac{(sinx+cosx)^2+(sinx-cosx)^2}{(sinx+cosx)^2}\\ &=\frac{1+2sinxcosx+1-2sinxcosx}{1+2sinxcosx}\\ &=\frac{2}{1+sin(2x)} \end{aligned}


63. ddx4x2(2x35x2)\frac{d}{dx}4x^2(2x^3 – 5x^2)

ddx4x2(2x35x2)=8x(2x35x2)+4x2(6x210x)=40x480x3=40x3(x2) \begin{aligned} &\frac{d}{dx}4x^2(2x^3 – 5x^2)\\ &=8x(2x^3-5x^2)+4x^2(6x^2-10x)\\ &=40x^4-80x^3=40x^3(x-2) \end{aligned}


64. ddx(x)(4x2)\frac{d}{dx}(\sqrt x)(4-x^2)

ddx(x)(4x2)=4x22x+x(2x)=4x24x22x=5x2+42x \begin{aligned} &\frac{d}{dx}(\sqrt x )(4-x^2)\\ &=\frac{4-x^2}{2\sqrt x}+\sqrt x(-2x)=\frac{4-x^2-4x^2}{2\sqrt x}\\ &=\frac{-5x^2+4}{2\sqrt x} \end{aligned}


65. ddx1+x1x\frac{d}{dx} \sqrt{\frac{1+x}{1-x}}

ddx1+x1x=ddx1x21x=2x(1x)21x2+1x2(1x)2=x2x+1x21x2(1x)2=1x1x2(1x)2=11x2(1x) \begin{aligned} &\frac{d}{dx}\sqrt{\frac{1+x}{1-x}}=\frac d {dx} \frac{\sqrt{1-x^2}}{1-x}\\ &=\frac{\frac{-2x(1-x)}{2\sqrt{1-x^2}}+\sqrt{1-x^2}}{(1-x)^2}\\ &=\frac{\frac{x^2-x+1-x^2}{\sqrt{1-x^2}} }{(1-x)^2} =\frac{1-x}{\sqrt{1-x^2}(1-x)^2}\\ &=\frac{1}{\sqrt{1-x^2}(1-x)} \end{aligned}


66. ddxsin(sinx)\frac{d}{dx}sin(sinx)

ddxsin(sinx)=cos(sinx)cosx \begin{aligned} &\frac{d}{dx}sin(sinx)\\ &=cos(sinx)cosx \end{aligned}


67. ddx(1+e2x)/(1e2x)\frac{d}{dx}(1+e^{2x})/(1-e^{2x})

ddx1+e2x1e2x=e2x2(1e2x)(1+e2x)(2e2x)(1e2x)2=2e2x2e4x+2e2x+2e4x(1e2x)2=4e2x(1e2x)2 \begin{aligned} &\frac{d}{dx}\frac{1+e^{2x}}{1-e^{2x}}\\ &=\frac{e^{2x}2(1-e^{2x})-(1+e^{2x})(-2e^{2x})}{(1-e^{2x})^2}\\ &=\frac{2e^{2x}-2e^{4x}+2e^{2x}+2e^{4x}}{(1-e^{2x})^2}\\ &=\frac{4e^{2x}}{(1-e^{2x})^2} \end{aligned}


68. ddx[x/(1+lnx)]\frac{d}{dx}[x/(1+lnx)]

ddxx1+lnx=1+lnxx(1/x)(1+lnx)2=lnx(1+lnx)2 \begin{aligned} &\frac{d}{dx} \frac{x}{1+lnx} \\ &=\frac{1+lnx-x(1/x)}{(1+lnx)^2}=\frac{lnx}{(1+lnx)^2} \end{aligned}


69. ddxxx/lnx\frac{d}{dx}x^{x/lnx}

ddxxx/lnxy=xx/lnx,lny=xlnxlnx=x,1ydy=dxdydx=y=xx/lnx=elnxx/lnx=e(x/lnx)lnx=ex \begin{aligned} &\frac{d}{dx}x^{x/lnx}\\ &y=x^{x/lnx}, lny=\frac{x}{lnx}lnx=x,\frac{1}{y}dy=dx\\ &\frac{dy}{dx}=y=x^{x/lnx}\\ &=e^{{lnx}^{x/lnx}}=e^{(x/lnx)lnx}=e^x \end{aligned}


70. ddxln[x21x2+1]\frac{d}{dx}ln[\sqrt{\frac{x^2-1}{x^2+1}}]

ddxln[x21x2+1]=x2+1x212x2x21x2+1x212x2x2+1x2+1=x(x2+1)x21xx21x21(x2+1)=x3+xx3+x(x21)(x2+1)=2x(x21)(x2+1) \begin{aligned} &\frac{d}{dx}ln[\sqrt{\frac{x^2-1}{x^2+1}}]\\ &=\sqrt \frac{x^2+1}{x^2-1}\frac{\frac{2x}{2\sqrt{x^2-1}}\sqrt{x^2+1}-\sqrt{x^2-1}{\frac{2x}{2\sqrt{x^2+1}}}}{x^2+1}\\ &=\frac{ \frac{x(x^2+1)}{\sqrt{x^2-1}} -x\sqrt{x^2-1} }{\sqrt{x^2-1}(x^2+1)}\\ &=\frac{x^3+x-x^3+x}{(x^2-1)(x^2+1)}=\frac{2x}{(x^2-1)(x^2+1)} \end{aligned}
Alt.
ln[x21x2+1]=12ln(x21)12ln(x2+1) ln[\sqrt{\frac{x^2-1}{x^2+1}}]=\frac{1}{2}ln(x^2-1)-\frac{1}{2}ln(x^2+1)



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivatie100 [51-60]  (0) 2019.11.18
D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06
반응형
derivative_br_51

51. ddx10x\frac{d}{dx}10^x

ddx10x=10xln(10) \begin{aligned} &\frac{d}{dx}10^x\\ &=10^xln(10) \end{aligned}

y=ax,lny=xlna(1/y)dy=(lna)dxdy/dx=ylna=axlnaor10x=eln10x \begin{aligned} &y=a^x, lny=xlna \\ &(1/y)dy=(lna)dx \\ &dy/dx=ylna=a^xlna \\ or\\ &10^x=e^{ln10^x} \end{aligned}


52. ddxcubert(x+(lnx)2)\frac{d}{dx}cubert(x+(lnx)^2)

ddxx+(lnx)23=ddx(x+(lnx)2)1/3=13(x+(lnx)2)2/3(1+2ln(x)1x)=13(x+(lnx)2)2/3(1+2lnxx) \begin{aligned} &\frac{d}{dx}\sqrt[3]{x+(lnx)^2}\\ &=\frac{d}{dx}(x+(lnx)^2)^{1/3}=\frac{1}{3}(x+(lnx)^2)^{-2/3}(1+2ln(x)\frac{1}{x})\\ &=\frac{1}{3(x+(lnx)^2)^{2/3}}(1+\frac{2lnx}{x}) \end{aligned}


53. ddxx3/42x1/4\frac{d}{dx}x^{3/4} – 2x^{1/4}

ddxx3/42x1/4=34x1/412x3/4=3x3/44x2x1/44x=3x432x44x \begin{aligned} &\frac{d}{dx}x^{3/4} – 2x^{1/4}\\ &=\frac{3}{4}x^{-1/4}-\frac{1}{2}x^{-3/4}\\ &=\frac{3x^{3/4}}{4x}-\frac{2x^{1/4}}{4x}\\ &=\frac{3\sqrt[4]x^3-2\sqrt[4]x}{4x} \end{aligned}


54. ddxlog2(x1+x2)\frac{d}{dx}log_2 (x \sqrt{1+x^2})

ddxlog2(x1+x2)((d/dx)logax=1xlna)=1+x2+x2x21+x2x1+x2ln2=1+2x2x(1+x2)ln2 \begin{aligned} &\frac{d}{dx}log_2 (x \sqrt{1+x^2})\\ &((d/dx) log_ax=\frac{1}{xlna})\\ &=\frac{\sqrt{1+x^2}+x\frac{2x}{2\sqrt{1+x^2}}}{x\sqrt{1+x^2}ln2}\\ &=\frac{1+2x^2}{x(1+x^2)ln2} \end{aligned}


55. ddx(x1)/(x2x+1)\frac{d}{dx}(x-1)/(x^2-x+1)

ddxx1x2x+1=x2x+1(x1)(2x1)(x2x+1)2=x2x+1(2x23x+1)(x2x+1)2=x2+2x(x2x+1)2 \begin{aligned} &\frac{d}{dx} \frac{x-1}{x^2-x+1}\\ &=\frac{x^2-x+1-(x-1)(2x-1)}{(x^2-x+1)^2}\\ &=\frac{x^2-x+1-(2x^2-3x+1)}{(x^2-x+1)^2}\\ &=\frac{-x^2+2x}{(x^2-x+1)^2} \end{aligned}


56. ddx13cos3xcosx\frac{d}{dx}\frac{1}{3} cos^3x – cosx

ddx13cos3xcosx=133cos2x(sinx)+sinx=sinx(1cos2x)=sin3x \begin{aligned} &\frac{d}{dx} \frac{1}{3}cos^3x – cosx\\ &=\frac{1}{3}3cos^2x(-sinx)+sinx\\ &=sinx(1-cos^2x)=sin^3x \end{aligned}


57. ddxexcosx\frac{d}{dx}e^{xcosx}

ddxexcosx=excosx(cosxxsinx) \begin{aligned} &\frac{d}{dx}e^{xcosx}=e^{xcosx}(cosx-xsinx)\\ \end{aligned}


58. ddx(xx)(x+x)\frac{d}{dx}(x-\sqrt{x})(x+\sqrt{x})

ddx(xx)(x+x)=ddxx2x=2x1 \begin{aligned} &\frac{d}{dx}(x-\sqrt{x})(x+\sqrt{x})=\frac{d}{dx}x^2-x\\ &=2x-1 \end{aligned}


59. ddxarccot(1x)\frac{d}{dx}arccot(\frac{1}{x})

ddxarccot(1x)y=arccot1x,1x=coty,x2dx=csc2ydyR.T.,angle=y,o=x,a=1,h=x2+1dydx=x2csc2y=1x21+x2x2=11+x2(=ddxarctan(x)) \begin{aligned} &\frac{d}{dx}arccot(\frac 1 x)\\ & y=arccot \frac 1 x, \frac 1 x=cot y, -x^{-2}dx=-csc^2ydy\\ & R.T., angle=y, o=x, a=1, h=\sqrt{x^2+1} \\ & \frac {dy}{dx}=\frac {x^{-2}}{csc^2 y}=\frac{1}{x^2\frac{1+x^2}{x^2}}=\frac{1}{1+x^2} \\ &(=\frac{d}{dx}arctan(x)) \end{aligned}
Alt.
ddxarccot(x)=11+x2ddxarccot(1/x)=11+1/x2(1/x2)=1x2+1 \frac{d}{dx} arccot(x)=-\frac{1}{1+x^2}\\ \frac{d}{dx} arccot(1/x)=-\frac{1}{1+1/x^2}(-1/x^2)\\ =\frac{1}{x^2+1}


60. ddx(x)(arctanx)ln(x2+1)\frac{d}{dx}(x)(arctanx) – ln(\sqrt{x^2+1})

ddx(x)(arctanx)ln(x2+1)=arctanx+x11+x21x2+112x2+12x=arctanx+x1+x2x1+x2=arctanx \begin{aligned} &\frac{d}{dx}(x)(arctanx) – ln(\sqrt{x^2+1})\\ &=arctanx+x\frac{1}{1+x^2}-\frac{1}{\sqrt{x^2+1}}\frac{1}{2\sqrt{x^2+1}}2x\\ &=arctanx+\frac{x}{1+x^2}-\frac{x}{1+x^2}\\ &=arctan x \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05
반응형
10D_notation

D notation/operator

D[(D+2t)[t38]]D[(D+2t)[t^3-8]]

(D+2t)[D[t38]](D+2t)[D[t^3-8]]

D(D+2t)(D+2t)DD(D+2t) \ne (D+2t)D
내부에 t가 있으면 교환법칙 성립안함.
D(D+2)=(D+2)D=D2+2DD(D+2) = (D+2)D=D^2+2D
내부에 t가 없으면 교환가능

(D+2)[(D1)[t38]](D+2)[(D-1)[t^3-8]]

(D1)[(D+2)[t38])(D-1)[(D+2)[t^3-8])

(D2+D2)[t38](D^2+D-2)[t^3-8]

(D+2)(D1)=(D1)(D+2)(D+2)(D-1)=(D-1)(D+2)
(D+2)(D1)=(D2+D2)(D+2)(D-1)=(D^2+D-2)

System D.E.

{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10t}x'(t)=3x(t)-4y(t)+1 \brace y'(t)=4x(t)-7y(t)+10t

{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10ty(t)=4x7y+104x=12x16y+43y=12x21y+30t4x3y=5y+430t4x=3y+5y+430ty=3y+5y+430t7y+10y+4y5y=30t+14found 2nd order LDE. \begin{cases} x'(t) &= 3x(t)-4y(t)+1 \\ y'(t) &= 4x(t)-7y(t)+10t \\ \end{cases} \\ y''(t) = 4x'-7y'+10 \\ 4x'=12x-16y+4\\ 3y'=12x-21y+30t\\ 4x'-3y'=5y+4-30t\\ 4x' = 3y'+5y+4-30t \\ y'' =3y'+5y+4-30t-7y'+10 \\ y'' +4y' -5y = -30t + 14 \\ \text{found 2nd order LDE.}
yh:r2+4r5=0,(r1)(r+5)=0r=15yh:et,e5typform:At+By=A,y=0y+4y5y=30t+140+4A5At5B=30t+14A=6,245B=14,B=2yp=6t+2y=Det+Ee5t+6t+2 y_h: r^2+4r-5=0, (r-1)(r+5)=0\\ r=1 \lor -5 \\ y_h: e^t, e^{-5t} \\ y_p form: At+B\\ y'=A, y''=0\\ y'' +4y' -5y = -30t + 14 \\ 0+4A-5At-5B=-30t+14\\ A=6, \quad 24-5B=14, \quad B=2\\ y_p = 6t+2\\ y = De^t+Ee^{-5t}+6t+2\\

연립방정식에서 x DE를 y처럼 구할수도 있지만  y를 대입해서 구한다.y(t)=4x(t)7y(t)+10t4x(t)=y+7y10t=Det5Ee5t+6+7Det+7Ee5t+42t+1410t=2Ee5t+8Det+32t+20x(t)=12Ee5t+2Det+8t+5 \text{연립방정식에서 x DE를 y처럼 구할수도 있지만 \\ y를 대입해서 구한다.}\\ y'(t) = 4x(t)-7y(t)+10t\\ 4x(t) = y'+7y-10t\\ =De^t-5Ee^{-5t}+6+7De^t+7Ee^{-5t}+42t+14-10t\\ =2Ee^{-5t}+8De^t+32t+20\\ x(t) = \frac 1 2Ee^{-5t}+2De^t+8t+5

Alt. Use D operator (D 연산자를 이용한 방식)
{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10t{x3x+4y=14x+y+7y=10t{(D3)(x)+4y=14x+(D+7)(y)=10t{4(D3)(x)+16y=4(D3)(4x)+(D3)(D+7)(y)=(D3)(10t) \begin{cases} x'(t) &= 3x(t)-4y(t)+1 \\ y'(t) &= 4x(t)-7y(t)+10t \\ \end{cases} \\ \begin{cases} x' -3x +4y &= 1 \\ -4x +y'+7y&= 10t \\ \end{cases} \\ \begin{cases} (D-3)(x) +4y &= 1 \\ -4x +(D+7)(y)&= 10t \\ \end{cases} \\ \begin{cases} 4(D-3)(x) +16y &= 4 \\ (D-3)(-4x) +(D-3)(D+7)(y)&= (D-3)(10t) \\ \end{cases} \\
16y+(D3)(D+7)(y)=(D3)(10t)+416y+(D2+4D21)y=1030t+416y+y+4y21y=30t+14y+4y5y=30t+14 16y+(D-3)(D+7)(y) = (D-3)(10t)+4\\ 16y+(D^2+4D-21)y = 10-30t+4\\ 16y+y''+4y'-21y=-30t+14\\ y''+4y'-5y=-30t+14 \\
위와 동일한 2계 미방을 구했다. 이하 생략.

y+4y5y=1430ty''+4y'-5y=14-30t

(D2+4D5)y=1430tD2(D2+4D5)y=D2(1430t)=0D2(D2+4D5)=0D2(D+5)(D1)=0D=0(repeated),1,5yform:C,Ct,et,e5typform:At+B(C, Ct same form.)input:ypy+4y5y=1430t0+4A5At5B=1430tA=6,B=2yp=6t+2y=C1et+C2e5t+6t+2 (D^2+4D-5) y = 14-30t\\ D^2(D^2+4D-5) y = D^2(14-30t)=0\\ D^2(D^2+4D-5)=0\\ D^2(D+5)(D-1)=0\\ D=0(repeated), 1, -5\\ y form: C, Ct, e^t, e^{-5t}\\ y_p form : At+B (\text{C, Ct same form.})\\ input : y_p \\ y''+4y'-5y=14-30t \\ 0+4A-5At-5B=14-30t\\ A=6, B=2\\ y_p = 6t+2\\ y = C_1e^t+C_2e^{-5t}+6t+2

system of differential equation.

Q {x+y+2x=0x+yxy=sin(t)}x'+y'+2x=0 \brace x'+y'-x-y=sin(t)

{x+y+2x=0(1)x+yxy=sin(t)(2){(D+2)x+Dy=0(D1)x+(D1)y=sin(t)substract{(D1)(D+2)x+(D1)Dy=(D1)0(D+2)(D1)x+(D+2)(D1)y=(D+2)sin(t)(D2D)y(D2+D2)y=(D+2)sin(t)yy(y+y2y)=(cos(t)+2sin(t))2y+2y=cos(t)2sin(t) \begin{cases} x'+y'+2x=0 \quad &(1)\\ x'+y'-x-y=sin(t) \quad &(2) \end{cases} \\ \begin{cases} (D+2)x+Dy=0 \\ (D-1)x+(D-1)y=sin(t) \end{cases}\\ substract \begin{cases} (D-1)(D+2)x+(D-1)Dy=(D-1)0 \\ (D+2)(D-1)x+(D+2)(D-1)y=(D+2)sin(t) \end{cases}\\ (D^2-D)y-(D^2+D-2)y=-(D+2)sin(t)\\ y''-y'-(y''+y'-2y)=-(cos(t)+2sin(t))\\ -2y'+2y=-cos(t)-2sin(t)\\

2y2y=cos(t)+2sin(t)(2D2)y=cos(t)+2sin(t)yh:2r2=0,r=1yh=C1etypform:yp=Acos(t)+Bsin(t)yp=Asin(t)+Bcos(t)2y2y=cos(t)+2sin(t)2Asin(t)+2Bcos(t)2Acos(t)2Bsin(t)=cos(t)+2sin(t)(2B2A)cos(t)+(2A2B)sin(t)=cos(t)+2sin(t)2B2A=1,2A2B=24A=3,A=34,2B+32=1,2B=12B=14y=C1et34cos(t)14sin(t) 2y'-2y=cos(t)+2sin(t)\\ (2D-2)y=cos(t)+2sin(t)\\ y_h : 2r-2=0, r=1 \\ y_h = C_1e^{t}\\ y_p form : y_p = Acos(t)+Bsin(t)\\ y_p' = -Asin(t)+Bcos(t) \\ 2y'-2y=cos(t)+2sin(t) \\ -2Asin(t)+2Bcos(t)-2Acos(t)-2Bsin(t) = cos(t)+2sin(t) \\ (2B-2A)cos(t)+(-2A-2B)sin(t) = cos(t)+2sin(t)\\ 2B-2A=1, -2A-2B=2 \\ -4A=3, A=-\frac 3 4 , 2B+\frac 3 2 = 1, 2B=-\frac 1 2\\ B=-\frac 1 4\\ \therefore y = C_1e^{t}-\frac 3 4 cos(t)-\frac 1 4 sin(t) \\
Alternative.
2y+2y=cos(t)2sin(t)yy=12cos(t)+sin(t)Int.Factor=e1dt=et(ety)=et(12cos(t)+sin(t))ety=et(12cos(t)+sin(t))dt=12etcos(t)dt+etsin(t)dtetcos(t)dt=etsin(t)(et)(cos(t))+et(cos(t))dtetcos(t)dt=12et(sin(t)cos(t))etsin(t)dt=et(cos(t))(et)(sin(t))+et(sin(t))dtetsin(t)dt=12et(cos(t)+sin(t))ety=14et(sin(t)cos(t))12et(cos(t)+sin(t))+C1y=14(sin(t)cos(t))12(cos(t)+sin(t))+C1ety=34cos(t)14sin(t)+C1etsame result. good.y=C1et+34sin(t)14cos(t) -2y'+2y=-cos(t)-2sin(t)\\ y'-y=\frac 1 2 cos(t)+sin(t)\\ Int.Factor=e^{\int -1 dt}=e^{-t}\\ (e^{-t}y)' = e^{-t}(\frac 1 2 cos(t)+sin(t))\\ e^{-t}y = \int e^{-t}(\frac 1 2 cos(t)+sin(t)) dt\\ =\frac 1 2 \int e^{-t}cos(t)dt+\int e^{-t} sin(t)dt\\ \int e^{-t}cos(t) dt = e^{-t}sin(t)-(-e^{-t})(-cos(t))+\int e^{-t}(-cos(t))dt\\ \int e^{-t}cos(t) dt = \frac 1 2 e^{-t}(sin(t)-cos(t)) \\ \int e^{-t}sin(t) dt = e^{-t}(-cos(t))-(-e^{-t})(-sin(t))+\int e^{-t}(-sin(t))dt\\ \int e^{-t}sin(t) dt = -\frac 1 2 e^{-t}(cos(t)+sin(t))\\ e^{-t}y = \frac 1 4 e^{-t}(sin(t)-cos(t))-\frac 1 2 e^{-t}(cos(t)+sin(t))+C_1\\ y = \frac 1 4 (sin(t)-cos(t))-\frac 1 2(cos(t)+sin(t))+C_1e^t\\ \therefore y = -\frac 3 4 cos(t)-\frac 1 4 sin(t)+C_1e^t \quad \text{same result. good.}\\ y' = C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t) \\

And…


  • Try to use EQ. (1)
    x+y+2x=0x+C1et+34sin(t)14cos(t)+2x=0x+2x=C1et34sin(t)+14cos(t)(D+2)x=C1et34sin(t)+14cos(t)xh:r+2=0,r=2xh=Ee2txpform=Aet+Bcos(t)+Csin(t)xp=AetBsin(t)+Ccos(t)x+2x=C1et34sin(t)+14cos(t)AetBsin(t)+Ccos(t)+2Aet+2Bcos(t)+2Csin(t)=C1et34sin(t)+14cos(t)3Aet(B2C)sin(t)+(2B+C)cos(t)=C1et34sin(t)+14cos(t)3A=C1,B2C=34,2B+C=144B+2C=24,5B=54,B=14,C=1424=14xp=13C1et+14cos(t)14sin(t)x(t)=Ee2t13C1et+14cos(t)14sin(t) \begin{aligned} &x'+y'+2x=0 \\ &x'+C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t)+2x=0\\ &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &(D+2)x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &x_h : r+2=0, r=-2\\ &x_h = E e^{-2t}\\ &x_p form = Ae^{t}+Bcos(t)+Csin(t) \\ &x_p' = Ae^{t}-Bsin(t)+Ccos(t) \\ &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &Ae^{t}-Bsin(t)+Ccos(t)+2Ae^{t}+2Bcos(t)+2Csin(t)\\ &=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &3Ae^{t}-(B-2C)sin(t)+(2B+C)cos(t)=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &3A=-C_1, B-2C=\frac 3 4, 2B+C=\frac 1 4\\ &4B+2C=\frac 2 4, 5B=\frac 5 4, B=\frac 1 4, C=\frac 1 4-\frac 2 4=-\frac 1 4\\ &x_p = -\frac 1 3 C_1e^{t}+\frac{1}{4}cos(t)-\frac 1 {4}sin(t)\\ & \therefore x(t) = Ee^{-2t}-\frac 1 3 C_1e^{t}+\frac{1}{4}cos(t)-\frac 1 {4}sin(t)\\ \end{aligned}
    But… e2te^{-2t} ??? is Not the solution.

Alternative.
x+2x=C1et34sin(t)+14cos(t)Int.Factor=e2dt=e2t(e2tx)=C1e3t34e2tsin(t)+14e2tcos(t)e2tx=C1e3tdt34e2tsin(t)dt+14e2tcos(t)dte2tsin(t)dt=e2t(cos(t))2e2t(sin(t))+4e2t(sin(t))dt5e2tsin(t)dt=e2t(cos(t)+2sin(t))e2tsin(t)dt=15e2t(cos(t)+2sin(t))e2tcos(t)dt=e2t(sin(t))2e2t(cos(t))+4e2t(cos(t))dt5e2tcos(t)dt=e2t(sin(t)+2cos(t))e2tcos(t)dt=15e2t(sin(t)+2cos(t))e3ttdt=13eudu=13eu=13e3te2tx=C1e3tdt34e2tsin(t)dt+14e2tcos(t)dt=C13e3t320e2t(cos(t)+2sin(t))+120e2t(sin(t)+2cos(t))+C2x=C13et320(2sin(t)cos(t))+120(sin(t)+2cos(t))+C2e2tx=C13et520sin(t)+520cos(t)+C2e2tx=C13et14sin(t)+14cos(t)+C2e2te2t found again ?? \begin{aligned} &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &Int.Factor = e^{\int 2 dt}=e^{2t}\\ &(e^{2t}x)' = -C_1e^{3t}-\frac 3 4 e^{2t}sin(t)+\frac 1 4 e^{2t}cos(t)\\ &e^{2t}x = -C_1\int e^3tdt-\frac 3 4\int e^{2t}sin(t)dt+\frac 1 4 \int e^{2t}cos(t)dt\\ &\int e^{2t}sin(t)dt =e^{2t}(-cos(t))-2e^{2t}(-sin(t))+\int 4e^{2t}(-sin(t))dt \\ &5\int e^{2t}sin(t)dt = e^{2t}(-cos(t)+2sin(t))\\ &\int e^{2t}sin(t)dt = \frac 1 5 e^{2t}(-cos(t)+2sin(t)) \\ &\int e^{2t}cos(t)dt =e^{2t}(sin(t))-2e^{2t}(-cos(t))+\int 4e^{2t}(-cos(t))dt \\ &5\int e^{2t}cos(t)dt = e^{2t}(sin(t)+2cos(t))\\ &\int e^{2t}cos(t)dt = \frac 1 5 e^{2t}(sin(t)+2cos(t)) \\ &\int e^{3t}t dt = \frac 1 3 \int e^u du =\frac 1 3 e^{u} = \frac 1 3 e^{3t}\\ & \therefore e^{2t}x = -C_1\int e^3tdt-\frac 3 4\int e^{2t}sin(t)dt+\frac 1 4 \int e^{2t}cos(t)dt\\ &=-\frac {C_1} 3 e^{3t}-\frac 3 {20} e^{2t}(-cos(t)+2sin(t)) +\frac 1 {20} e^{2t}(sin(t)+2cos(t)) + C_2 \\ &x = -\frac {C_1} 3 e^t-\frac 3 {20}(2sin(t)-cos(t))+\frac 1 {20}(sin(t)+2cos(t))+C_2e^{-2t}\\ &x = -\frac {C_1} 3 e^t-\frac 5 {20}sin(t)+\frac 5 {20}cos(t)+C_2e^{-2t}\\ &x = -\frac {C_1} 3 e^t-\frac 1 {4}sin(t)+\frac 1 {4}cos(t)+C_2e^{-2t}\\ &e^{-2t} \text{ found again } ?? &\quad \\ \end{aligned}


  • Try to use EQ. (2)
    x+yxy=sin(t)xx+yy=sin(t)xx+C1et+34sin(t)14cos(t)(34cos(t)14sin(t)+C1et)=sin(t)xx+sin(t)+12cos(t)=sin(t)xx=12cos(t)IntegrationFactor=et(etx)=12etcos(t)etx=12etcos(t)dtetx=12(12et(sin(t)cos(t))+C3)x=14(cos(t)sint(t))+C3et \begin{aligned} &x'+y'-x-y=sin(t)\\ &x'-x+y'-y=sin(t)\\ &x'-x+C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t)-(-\frac 3 4 cos(t)-\frac 1 4 sin(t)+C_1e^t) \\ &= sin(t)\\ &x'-x+sin(t)+\frac 1 2 cos(t)=sin(t)\\ &x'-x=-\frac 1 2 cos(t) \\ & IntegrationFactor = e^{-t}\\ &( e^{-t}x)' = -\frac 1 2 e^{-t} cos(t) \\ &e^{-t}x = -\frac 1 2 \int e^{-t} cos(t) dt \\ &e^{-t}x = -\frac 1 2 (\frac 1 2 e^{-t}(sin(t)-cos(t)) +C_3)\\ &x = \frac 1 4 (cos(t) - sint(t))+C_3e^t \end{aligned}
    alternative.
    xx=12cos(t)2x2x=cos(t)1. find xh2x2x=0,(2D2)x=02r2=0,r=1xh=C3et2. find xpxp=Acost+Bsintxp=Asint+Bcost2x2x=cos(t)2(Asint+Bcost)2(Acost+Bsint)=cos(t)(2B2A)cost+(2A2B)sint=cost2B2A=1,2A2B=0,A=B,4B=1,B=1/4,A=1/43. find xx=C3et+14cost14sint \begin{aligned} &x'-x=-\frac 1 2 cos(t) \\ &2x'-2x=-cos(t)\\ &\text {1. find }x_h\\ & 2x'-2x=0 , \quad (2D-2)x=0\\ & 2r-2=0, r=1 \\ & x_h = C_3e^t \\ & \text{2. find }x_p\\ & x_p = Acost+Bsint\\ & x_p' = -Asint+Bcost \\ &2x'-2x=-cos(t)\\ &2(-Asint+Bcost)-2(Acost+Bsint)=-cos(t)\\ &(2B-2A)cost + (-2A-2B)sin t = -cost \\ &2B-2A=-1, -2A-2B=0, A=-B, 4B=-1, \\ &B=-1/4, A=1/4\\ &\text{3. find } x \\ &x = C_3e^t+\frac 1 4 cos t - \frac 1 4 sin t \end{aligned}

Q. {x=yx(0)=3x(0)=1y=xy(0)=1y(0)=1}x''=y \quad x(0)=3 \quad x'(0)=1 \brace y''=x \quad y(0)=1 \quad y'(0)=-1

D2(x)y=0D2(y)x=0D4(x)D2(y)=0D4(x)x=0(D41)(x)=0r41=0(r21)(r2+1)=0r=±1,r=±ix(t)=C1et+C2et+C3cos(t)+C4sin(t)x(t)=C1et+C2etC3sin(t)+C4cos(t)x(t)=C1et+C2etC3cos(t)C4sin(t)x(0)=C1+C2+C3=3x(0)=C1+C2+C4=12C2+C3+C4=4y=D2(x)=C1et+C2etC3cos(t)C4sin(t)y=C1et+C2et+C3sin(t)C4cos(t)y(0)=C1+C2C3=1y(0)=C1+C2C4=12C2C3C4=04C2=4,C2=1C1+C3=2,C4C1=0,C1=C4C1C3=0,C1=C3=1x(t)=et+et+cos(t)+sin(t)y(t)=et+etcos(t)sin(t) D^2(x)-y=0 \\ D^2(y)-x=0 \\ D^4(x)-D^2(y)=0\\ D^4(x)-x=0\\ (D^4-1)(x)=0 \\ r^4-1=0 \\ (r^2-1)(r^2+1)=0 \\ r=\pm1 , \quad r=\pm i\\ x(t) = C_1e^{-t}+C_2e^{t}+C_3cos(t)+C_4sin(t)\\ x'(t) = -C_1e^{-t}+C_2e^{t}-C_3sin(t)+C_4cos(t)\\ x''(t) = C_1e^{-t}+C_2e^{t}-C_3cos(t)-C_4sin(t)\\ x(0) = C_1+C_2+C_3=3\\ x'(0)=-C_1+C_2+C_4=1\\ 2C_2+C_3+C_4=4\\ y = D^2(x) = C_1e^{-t}+C_2e^{t}-C_3cos(t)-C_4sin(t)\\ y' = -C_1e^{-t}+C_2e^{t}+C_3sin(t)-C_4cos(t)\\ y(0) = C_1+C_2-C_3=1 \\ y'(0) = -C_1+C_2-C_4=-1 \\ 2C_2-C_3-C_4=0\\ 4C_2=4, C_2=1\\ C_1+C_3=2, C_4-C_1=0, C_1=C_4\\ C_1-C_3=0, C_1=C_3=1\\ \therefore x(t) = e^{-t}+e^{t}+cos(t)+sin(t)\\ y(t) = e^{-t}+e^{t}-cos(t)-sin(t)

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18
derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05
derivative100 [21-30]  (0) 2019.11.04
반응형
derivative_br_41

41. ddx(x)sqrt(4x2)\frac{d}{dx} (x)sqrt(4-x^2)

ddxx4x2=4x2+x2x24x2=42x24x2 \begin{aligned} &\frac{d}{dx} x\sqrt{4-x^2}=\sqrt{4-x^2}+x\frac{-2x}{2\sqrt{4-x^2}}\\ &=\frac{4-2x^2}{\sqrt{4-x^2}} \end{aligned}


42. ddxsqrt(x21)/x\frac{d}{dx}sqrt(x^2-1)/x

ddxx21x=2x22x21x21x2=1x21x21x2=1x2x21 \begin{aligned} &\frac{d}{dx} \frac {\sqrt{x^2-1}} x =\frac {\frac{2x^2}{2\sqrt{x^2-1}}-\sqrt{x^2-1}}{x^2}\\ &=\frac{1}{\sqrt{x^2-1}}-\frac{\sqrt{x^2-1}}{x^2} \\ &=\frac{1}{x^2\sqrt{x^2-1}} \end{aligned}


43. ddxx/sqrt(x21)\frac{d}{dx}x/sqrt(x^2-1)

ddxxx21=x21x2x2x21x21=1x21x2x21(x21)=1x21(x21) \begin{aligned} &\frac{d}{dx} \frac x {\sqrt{x^2-1}}\\ &=\frac{\sqrt{x^2-1}-x\frac{2x}{2\sqrt{x^2-1}}}{x^2-1}\\ &=\frac{1}{\sqrt{x^2-1}}-\frac{x^2}{\sqrt{x^2-1}(x^2-1)}\\ &=-\frac{1}{\sqrt{x^2-1}(x^2-1)} \end{aligned}


44. ddxcos(arcsinx)\frac{d}{dx} cos(arcsinx)

ddxcos(arcsinx)=sin(arcsinx)11x2=x1x2 \begin{aligned} &\frac{d}{dx} cos(arcsinx)\\ &=-sin(arcsinx)\frac{1}{\sqrt{1-x^2}}\\ &=-\frac{x}{\sqrt{1-x^2}} \end{aligned}


45. ddxln(x2+3x+5)\frac{d}{dx} ln(x^2 + 3x + 5)

ddxln(x2+3x+5)=2x+3x2+3x+5 \begin{aligned} &\frac{d}{dx} ln(x^2 + 3x + 5)\\ &=\frac{2x+3}{x^2 + 3x + 5} \end{aligned}


46. ddx(arctan(4x))2\frac{d}{dx}(arctan(4x))^2

ddx(arctan(4x))2=2arctan(4x)41+16x2=8tan14x1+16x2 \begin{aligned} &\frac{d}{dx}(arctan(4x))^2\\ &=2arctan(4x)\frac{4}{1+16x^2}\\ &=\frac{8\tan^{-1}{4x}}{1+16x^2} \end{aligned}


47. ddxcubert(x2)\frac{d}{dx}cubert(x^2)

ddxx23=ddxx23=23x13=23x3 \begin{aligned} &\frac{d}{dx}\sqrt[3]{x^2}=\frac{d}{dx}x^{\frac{2}{3}}\\ &=\frac{2}{3}x^{-\frac{1}{3}}=\frac{2}{3\sqrt[3]{x}} \end{aligned}


48. ddxsin(sqrt(x)lnx)\frac{d}{dx}sin(sqrt(x) lnx)

ddxsin(xlnx)=cos(xlnx)(12xlnx+x1x)=cos(xlnx)ln(x)x+2x2x \begin{aligned} &\frac{d}{dx}sin(\sqrt{x} lnx)\\ &=cos(\sqrt{x} lnx)(\frac{1}{2\sqrt x}lnx+\sqrt x \frac{1}{x})\\ &=cos(\sqrt{x} lnx)\frac{ln(x)\sqrt{x}+2\sqrt x}{2x} \end{aligned}


49. ddxcsc(x2)\frac{d}{dx}csc(x^2)

ddxcsc(x2)=csc(x2)cot(x2)2x=2xcsc(x2)cot(x2)cf)ddxcsc2x=2cscx(cscxcotx)=2csc2xcotx \begin{aligned} &\frac{d}{dx}csc(x^2)=-csc(x^2)cot(x^2)2x\\ &=-2xcsc(x^2)cot(x^2)\\ &cf) \frac{d}{dx}csc^2x=2cscx(-cscxcotx)\\ &=-2csc^2xcotx\\ \end{aligned}


50. ddx(x21)/lnx\frac{d}{dx}(x^2-1)/lnx

ddxx21lnx=2xlnx((x21)1x)(lnx)2=2xlnxx+(1/x)(lnx)2 \begin{aligned} &\frac{d}{dx}\frac{x^2-1}{lnx}=\frac{2xlnx-((x^2-1)\frac{1}{x})}{(lnx)^2}\\ &=\frac{2xlnx-x+(1/x)}{(lnx)^2} \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivatie100 [51-60]  (0) 2019.11.18
D operator  (0) 2019.11.07
derivative100 [31-40]  (0) 2019.11.05
derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
반응형
derivative_br_31

31. d2dx219sec(3x)\frac{d^2}{dx^2}\frac{1}{9} sec(3x)

d2dx219sec(3x)=19d2dx2sec(3x)=13ddxsec(3x)tan(3x)=sec(3x)tan(3x)tan(3x)+sec(3x)sec2(3x)=sec(3x)(tan2(3x)+sec2(3x)) \begin{aligned} &\frac{d^2}{dx^2}\frac{1}{9} sec(3x)\\ &=\frac{1}{9}\frac{d^2}{dx^2} sec(3x)=\frac{1}{3}\frac{d}{dx}sec(3x)tan(3x)\\ &=sec(3x)tan(3x)tan(3x)+sec(3x)sec^2(3x)\\ &=sec(3x)(tan^2(3x)+sec^2(3x))\\ \end{aligned}


32. d2dx2(x+1)/sqrt(x)\frac{d^2}{dx^2} (x+1)/sqrt(x)

d2dx2x+1x=ddxx(x+1)12xx=ddxx2x2xx=ddxxxx2x2=12ddxx12x32=14x32+34x52=3x4x52 \begin{aligned} &\frac{d^2}{dx^2} \frac{x+1}{\sqrt x} \\ &=\frac{d}{dx}\frac{\sqrt x-(x+1)\frac{1}{2\sqrt x} }{x}=\frac{d}{dx}\frac{\frac{\sqrt x}{2}-\frac{\sqrt x}{2x}}{x}\\ &=\frac{d}{dx}\frac{x\sqrt x -\sqrt x }{2x^2}= \frac{1}{2}\frac{d}{dx} x^{-\frac{1}{2}}-x^{-\frac{3}{2}}\\ &=-\frac{1}{4}x^{-\frac{3}{2}}+\frac{3}{4}x^{-\frac{5}{2}}\\ &=\frac{3-x}{4x^{\frac{5}{2}}} \end{aligned}


33. d2dx2arcsin(x2)\frac{d^2}{dx^2}arcsin(x^2)

d2dx2arcsin(x2)=ddx2x1x4=21x42x4x321x41x4=21x41x4+4x41x41x4=2+2x4(1x4)3/2 \begin{aligned} &\frac{d^2}{dx^2}arcsin(x^2) \\ &=\frac{d}{dx} \frac{2x}{\sqrt{1-x^4}}=\frac{2\sqrt{1-x^4}-2x\frac{-4x^3}{2\sqrt{1-x^4}}}{1-x^4}\\ &=\frac{2\frac{1-x^4}{\sqrt{1-x^4}}+\frac{4x^4}{\sqrt{1-x^4}}}{1-x^4}\\ &=\frac{2+2x^4}{(1-x^4)^{3/2}} \end{aligned}


34. d2dx21/(1+cosx)\frac{d^2}{dx^2}1/(1+cosx)

d2dx211+cosx=ddxsinx(1+cosx)2=cosx(1+cosx)2+sinx2(1+cosx)sinx(1+cosx)4=A=cosx+2cos2x+cos3x+2sin2x+2sin2xcosx(1+cosx)4=2+cosx(1+cos2x+2sin2x)(1+cosx)4=2+cosx(2+sin2x)(1+cosx)4=2+cosx(3cos2x)(1+cosx)4=2+3cosxcos3x(1+cosx)4A=cosx(1+cosx)+2sin2x(1+cosx)3=cosx+sin2x+1(1+cosx)3 \begin{aligned} &\frac{d^2}{dx^2} \frac{1}{1+cosx} \\ &=\frac{d}{dx} \frac{sin x}{(1+cos x)^2}=\frac{cos x(1+cosx)^2+sinx2(1+cosx)sinx}{(1+cos x)^4}\\ &=A\\ &=\frac{cosx+2cos^2x+cos^3x+2sin^2x+2sin^2xcosx}{(1+cosx)^4}\\ &=\frac{2+cosx(1+cos^2x+2sin^2x)}{(1+cosx)^4}\\ &=\frac{2+cosx(2+sin^2x)}{(1+cosx)^4}\\ &=\frac{2+cosx(3-cos^2x)}{(1+cosx)^4}=\frac{2+3cosx-cos^3x}{(1+cosx)^4}\\ &A=\frac{cosx(1+cosx)+2sin^2x}{(1+cosx)^3}=\frac{cosx+sin^2x+1}{(1+cosx)^3} \end{aligned}


35. d2dx2(x)arctan(x)\frac{d^2}{dx^2}(x)arctan(x)

d2dx2(x)arctan(x)=ddxarctan(x)+x11+x2=11+x2+11+x2x(1+x2)22x=21+x22x2(1+x2)2=2+2x22x2(1+x2)2=2(1+x2)2 \begin{aligned} &\frac{d^2}{dx^2}(x)arctan(x) \\ &=\frac{d}{dx}arctan(x)+x\frac{1}{1+x^2}\\ &=\frac{1}{1+x^2}+\frac{1}{1+x^2}-x(1+x^2)^{-2}2x\\ &=\frac{2}{1+x^2}-\frac{2x^2}{(1+x^2)^2}\\ &=\frac{2+2x^2-2x^2}{(1+x^2)^2}=\frac{2}{(1+x^2)^2}\\ \end{aligned}


36. d2dx2x4lnx\frac{d^2}{dx^2}x^4 lnx

d2dx2x4lnx=ddx4x3lnx+x3=4(3x2)lnx+4x3(1/x)+3x2=12x2lnx+7x2 \begin{aligned} &\frac{d^2}{dx^2}x^4 lnx \\ &=\frac{d}{dx}4x^3lnx+x^3\\ &=4(3x^2)lnx+4x^3(1/x)+3x^2\\ &=12x^2lnx+7x^2 \end{aligned}


37. d2dx2ex2\frac{d^2}{dx^2}e^{-x^2}

d2dx2ex2=ddx2xex2=2ex22x(2xex2)=ex2(4x22) \begin{aligned} &\frac{d^2}{dx^2}e^{-x^2} \\ &=\frac{d}{dx} -2xe^{-x^2}=-2e^{-x^2}-2x(-2xe^{-x^2})\\ &=e^{-x^2}(4x^2-2) \end{aligned}


38. d2dx2cos(lnx)\frac{d^2}{dx^2}cos(lnx)

d2dx2cos(lnx)=ddxsin(lnx)1x=cos(lnx)1x1xsin(lnx)(1)1x2=1x2(sin(lnx)cos(lnx)) \begin{aligned} &\frac{d^2}{dx^2} cos(lnx) =\frac{d}{dx}-sin(lnx)\frac{1}{x}\\ &=-cos(lnx)\frac{1}{x}\frac{1}{x}-sin(lnx)(-1)\frac{1}{x^2}\\ &=\frac{1}{x^2}(sin(lnx)-cos(lnx)) \end{aligned}


39. d2dx2ln(cosx)\frac{d^2}{dx^2}ln(cosx)

d2dx2ln(cosx)=ddxsinxcosx=ddxtanx=sec2x \begin{aligned} &\frac{d^2}{dx^2} ln(cosx)=\frac{d}{dx}\frac{-sinx}{cosx}\\ &=\frac{d}{dx}-tanx=-sec^2x \end{aligned}


40. ddxsqrt(1x2)+(x)(arcsinx)\frac{d}{dx} sqrt(1-x^2) + (x)(arcsinx)

ddx1x2+(x)(arcsinx)=2x21x2+arcsinx+x11x2=arcsin(x) \begin{aligned} &\frac{d}{dx} \sqrt{1-x^2} + (x)(arcsinx) \\ &=\frac{-2x}{2\sqrt{1-x^2}}+arcsinx+x\frac{1}{\sqrt{1-x^2}}\\ &=arcsin(x) \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06
derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30

+ Recent posts