We know, sinx=cos(2π−x) I=∫02πln(sin(x))dx=∫02πln(cos(2π−x))dx(u=2π−x,du=−dx)=∫2π0ln(cos(u))−du=∫02πln(cos(u))du
So, I=∫02πln(sin(x))dx=∫02πln(cos(u))du 2I=∫02πln(sin(x))dx+∫02πln(cos(x))dx=∫02πln(sin(x))+ln(cos(x))dx=∫02πln(sin(x)cos(x))dx=∫02πln(21sin(2x))dx=∫02πln(21)dx+∫02πln(sin(2x))dx=2πln(21)+∫02πln(sin(2x))dx=−2πln(2)+∫02πln(sin(2x))dx(u=2x,du=2dx)
=−2πln(2)+21∫0πln(sin(u))du
The ln area of Sin from 0 to pi is 2 times of the area of sin from 0 to pi/2. =−2πln(2)+∫02πln(sin(u))du2I=−2πln(2)+I∴I=∫02πln(sin(x))dx=−2πln(2)