반응형
calculus_int_ln_sin

0π2ln(sin(x))dx \int_{0}^{\frac{\pi}{2}} ln(sin(x))dx


We know,
sinx=cos(π2x) sin x = cos( \frac{\pi}{2}-x)
I=0π2ln(sin(x))dx=0π2ln(cos(π2x))dx(u=π2x,du=dx)=π20ln(cos(u))du=0π2ln(cos(u))du I = \int_{0}^{\frac{\pi}{2}} ln(sin(x))dx \\ = \int_{0}^{\frac{\pi}{2}} ln( cos( \frac{\pi}{2}-x))dx \\ (u = \frac{\pi}{2}-x, du = -dx) \\ = \int_\frac{\pi}{2}^{0}ln(cos(u))-du\\ = \int_{0}^{\frac{\pi}{2}}ln(cos(u))du
So,
I=0π2ln(sin(x))dx=0π2ln(cos(u))du I = \int_{0}^{\frac{\pi}{2}} ln(sin(x))dx = \int_{0}^{\frac{\pi}{2}}ln(cos(u))du
2I=0π2ln(sin(x))dx+0π2ln(cos(x))dx=0π2ln(sin(x))+ln(cos(x))dx=0π2ln(sin(x)cos(x))dx=0π2ln(12sin(2x))dx=0π2ln(12)dx+0π2ln(sin(2x))dx=π2ln(12)+0π2ln(sin(2x))dx=π2ln(2)+0π2ln(sin(2x))dx(u=2x,du=2dx) 2I = \int_{0}^{\frac{\pi}{2}} ln(sin(x))dx + \int_{0}^{\frac{\pi}{2}}ln(cos(x))dx\\ =\int_{0}^{\frac{\pi}{2}} ln(sin(x))+ln(cos(x))dx\\ =\int_{0}^{\frac{\pi}{2}} ln(sin(x)cos(x))dx \\ =\int_{0}^{\frac{\pi}{2}} ln(\frac{1}{2} sin(2x))dx \\ = \int_{0}^{\frac{\pi}{2}} ln(\frac{1}{2})dx + \int_{0}^{\frac{\pi}{2}} ln(sin(2x))dx \\ =\frac{\pi}{2}ln(\frac{1}{2})+ \int_{0}^{\frac{\pi}{2}} ln(sin(2x))dx \\ =-\frac{\pi}{2}ln(2)+ \int_{0}^{\frac{\pi}{2}} ln(sin(2x))dx \\ (u=2x, du=2dx)

=π2ln(2)+120πln(sin(u))du =-\frac{\pi}{2}ln(2)+ \frac{1}{2}\int_{0}^{\pi} ln(sin(u))du
The ln area of Sin from 0 to pi is 2 times of the area of sin from 0 to pi/2.
=π2ln(2)+0π2ln(sin(u))du2I=π2ln(2)+II=0π2ln(sin(x))dx=π2ln(2) =-\frac{\pi}{2}ln(2)+ \int_{0}^{\frac{\pi}{2}} ln(sin(u))du \\ 2I=-\frac{\pi}{2}ln(2)+ I \\ \therefore I = \int_{0}^{\frac{\pi}{2}} ln(sin(x))dx = -\frac{\pi}{2}ln(2)

Author
crazyj7@gmail.com
Written with StackEdit.

'Math' 카테고리의 다른 글

Integral100 [1-10]  (2) 2019.10.12
integral ln gamma  (0) 2019.08.01
Gaussian integration  (0) 2019.07.26
적분 순서 치환방법 정리  (0) 2019.05.05
미분 곡률 테일러시리즈  (0) 2019.05.05

+ Recent posts