반응형
derivative_br_31

31. d2dx219sec(3x)\frac{d^2}{dx^2}\frac{1}{9} sec(3x)

d2dx219sec(3x)=19d2dx2sec(3x)=13ddxsec(3x)tan(3x)=sec(3x)tan(3x)tan(3x)+sec(3x)sec2(3x)=sec(3x)(tan2(3x)+sec2(3x)) \begin{aligned} &\frac{d^2}{dx^2}\frac{1}{9} sec(3x)\\ &=\frac{1}{9}\frac{d^2}{dx^2} sec(3x)=\frac{1}{3}\frac{d}{dx}sec(3x)tan(3x)\\ &=sec(3x)tan(3x)tan(3x)+sec(3x)sec^2(3x)\\ &=sec(3x)(tan^2(3x)+sec^2(3x))\\ \end{aligned}


32. d2dx2(x+1)/sqrt(x)\frac{d^2}{dx^2} (x+1)/sqrt(x)

d2dx2x+1x=ddxx(x+1)12xx=ddxx2x2xx=ddxxxx2x2=12ddxx12x32=14x32+34x52=3x4x52 \begin{aligned} &\frac{d^2}{dx^2} \frac{x+1}{\sqrt x} \\ &=\frac{d}{dx}\frac{\sqrt x-(x+1)\frac{1}{2\sqrt x} }{x}=\frac{d}{dx}\frac{\frac{\sqrt x}{2}-\frac{\sqrt x}{2x}}{x}\\ &=\frac{d}{dx}\frac{x\sqrt x -\sqrt x }{2x^2}= \frac{1}{2}\frac{d}{dx} x^{-\frac{1}{2}}-x^{-\frac{3}{2}}\\ &=-\frac{1}{4}x^{-\frac{3}{2}}+\frac{3}{4}x^{-\frac{5}{2}}\\ &=\frac{3-x}{4x^{\frac{5}{2}}} \end{aligned}


33. d2dx2arcsin(x2)\frac{d^2}{dx^2}arcsin(x^2)

d2dx2arcsin(x2)=ddx2x1x4=21x42x4x321x41x4=21x41x4+4x41x41x4=2+2x4(1x4)3/2 \begin{aligned} &\frac{d^2}{dx^2}arcsin(x^2) \\ &=\frac{d}{dx} \frac{2x}{\sqrt{1-x^4}}=\frac{2\sqrt{1-x^4}-2x\frac{-4x^3}{2\sqrt{1-x^4}}}{1-x^4}\\ &=\frac{2\frac{1-x^4}{\sqrt{1-x^4}}+\frac{4x^4}{\sqrt{1-x^4}}}{1-x^4}\\ &=\frac{2+2x^4}{(1-x^4)^{3/2}} \end{aligned}


34. d2dx21/(1+cosx)\frac{d^2}{dx^2}1/(1+cosx)

d2dx211+cosx=ddxsinx(1+cosx)2=cosx(1+cosx)2+sinx2(1+cosx)sinx(1+cosx)4=A=cosx+2cos2x+cos3x+2sin2x+2sin2xcosx(1+cosx)4=2+cosx(1+cos2x+2sin2x)(1+cosx)4=2+cosx(2+sin2x)(1+cosx)4=2+cosx(3cos2x)(1+cosx)4=2+3cosxcos3x(1+cosx)4A=cosx(1+cosx)+2sin2x(1+cosx)3=cosx+sin2x+1(1+cosx)3 \begin{aligned} &\frac{d^2}{dx^2} \frac{1}{1+cosx} \\ &=\frac{d}{dx} \frac{sin x}{(1+cos x)^2}=\frac{cos x(1+cosx)^2+sinx2(1+cosx)sinx}{(1+cos x)^4}\\ &=A\\ &=\frac{cosx+2cos^2x+cos^3x+2sin^2x+2sin^2xcosx}{(1+cosx)^4}\\ &=\frac{2+cosx(1+cos^2x+2sin^2x)}{(1+cosx)^4}\\ &=\frac{2+cosx(2+sin^2x)}{(1+cosx)^4}\\ &=\frac{2+cosx(3-cos^2x)}{(1+cosx)^4}=\frac{2+3cosx-cos^3x}{(1+cosx)^4}\\ &A=\frac{cosx(1+cosx)+2sin^2x}{(1+cosx)^3}=\frac{cosx+sin^2x+1}{(1+cosx)^3} \end{aligned}


35. d2dx2(x)arctan(x)\frac{d^2}{dx^2}(x)arctan(x)

d2dx2(x)arctan(x)=ddxarctan(x)+x11+x2=11+x2+11+x2x(1+x2)22x=21+x22x2(1+x2)2=2+2x22x2(1+x2)2=2(1+x2)2 \begin{aligned} &\frac{d^2}{dx^2}(x)arctan(x) \\ &=\frac{d}{dx}arctan(x)+x\frac{1}{1+x^2}\\ &=\frac{1}{1+x^2}+\frac{1}{1+x^2}-x(1+x^2)^{-2}2x\\ &=\frac{2}{1+x^2}-\frac{2x^2}{(1+x^2)^2}\\ &=\frac{2+2x^2-2x^2}{(1+x^2)^2}=\frac{2}{(1+x^2)^2}\\ \end{aligned}


36. d2dx2x4lnx\frac{d^2}{dx^2}x^4 lnx

d2dx2x4lnx=ddx4x3lnx+x3=4(3x2)lnx+4x3(1/x)+3x2=12x2lnx+7x2 \begin{aligned} &\frac{d^2}{dx^2}x^4 lnx \\ &=\frac{d}{dx}4x^3lnx+x^3\\ &=4(3x^2)lnx+4x^3(1/x)+3x^2\\ &=12x^2lnx+7x^2 \end{aligned}


37. d2dx2ex2\frac{d^2}{dx^2}e^{-x^2}

d2dx2ex2=ddx2xex2=2ex22x(2xex2)=ex2(4x22) \begin{aligned} &\frac{d^2}{dx^2}e^{-x^2} \\ &=\frac{d}{dx} -2xe^{-x^2}=-2e^{-x^2}-2x(-2xe^{-x^2})\\ &=e^{-x^2}(4x^2-2) \end{aligned}


38. d2dx2cos(lnx)\frac{d^2}{dx^2}cos(lnx)

d2dx2cos(lnx)=ddxsin(lnx)1x=cos(lnx)1x1xsin(lnx)(1)1x2=1x2(sin(lnx)cos(lnx)) \begin{aligned} &\frac{d^2}{dx^2} cos(lnx) =\frac{d}{dx}-sin(lnx)\frac{1}{x}\\ &=-cos(lnx)\frac{1}{x}\frac{1}{x}-sin(lnx)(-1)\frac{1}{x^2}\\ &=\frac{1}{x^2}(sin(lnx)-cos(lnx)) \end{aligned}


39. d2dx2ln(cosx)\frac{d^2}{dx^2}ln(cosx)

d2dx2ln(cosx)=ddxsinxcosx=ddxtanx=sec2x \begin{aligned} &\frac{d^2}{dx^2} ln(cosx)=\frac{d}{dx}\frac{-sinx}{cosx}\\ &=\frac{d}{dx}-tanx=-sec^2x \end{aligned}


40. ddxsqrt(1x2)+(x)(arcsinx)\frac{d}{dx} sqrt(1-x^2) + (x)(arcsinx)

ddx1x2+(x)(arcsinx)=2x21x2+arcsinx+x11x2=arcsin(x) \begin{aligned} &\frac{d}{dx} \sqrt{1-x^2} + (x)(arcsinx) \\ &=\frac{-2x}{2\sqrt{1-x^2}}+arcsinx+x\frac{1}{\sqrt{1-x^2}}\\ &=arcsin(x) \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06
derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30

+ Recent posts