derivative_br_31
31. dx2d291sec(3x)
dx2d291sec(3x)=91dx2d2sec(3x)=31dxdsec(3x)tan(3x)=sec(3x)tan(3x)tan(3x)+sec(3x)sec2(3x)=sec(3x)(tan2(3x)+sec2(3x))
32. dx2d2(x+1)/sqrt(x)
dx2d2xx+1=dxdxx−(x+1)2x1=dxdx2x−2xx=dxd2x2xx−x=21dxdx−21−x−23=−41x−23+43x−25=4x253−x
33. dx2d2arcsin(x2)
dx2d2arcsin(x2)=dxd1−x42x=1−x421−x4−2x21−x4−4x3=1−x421−x41−x4+1−x44x4=(1−x4)3/22+2x4
34. dx2d21/(1+cosx)
dx2d21+cosx1=dxd(1+cosx)2sinx=(1+cosx)4cosx(1+cosx)2+sinx2(1+cosx)sinx=A=(1+cosx)4cosx+2cos2x+cos3x+2sin2x+2sin2xcosx=(1+cosx)42+cosx(1+cos2x+2sin2x)=(1+cosx)42+cosx(2+sin2x)=(1+cosx)42+cosx(3−cos2x)=(1+cosx)42+3cosx−cos3xA=(1+cosx)3cosx(1+cosx)+2sin2x=(1+cosx)3cosx+sin2x+1
35. dx2d2(x)arctan(x)
dx2d2(x)arctan(x)=dxdarctan(x)+x1+x21=1+x21+1+x21−x(1+x2)−22x=1+x22−(1+x2)22x2=(1+x2)22+2x2−2x2=(1+x2)22
36. dx2d2x4lnx
dx2d2x4lnx=dxd4x3lnx+x3=4(3x2)lnx+4x3(1/x)+3x2=12x2lnx+7x2
37. dx2d2e−x2
dx2d2e−x2=dxd−2xe−x2=−2e−x2−2x(−2xe−x2)=e−x2(4x2−2)
38. dx2d2cos(lnx)
dx2d2cos(lnx)=dxd−sin(lnx)x1=−cos(lnx)x1x1−sin(lnx)(−1)x21=x21(sin(lnx)−cos(lnx))
39. dx2d2ln(cosx)
dx2d2ln(cosx)=dxdcosx−sinx=dxd−tanx=−sec2x
40. dxdsqrt(1−x2)+(x)(arcsinx)
dxd1−x2+(x)(arcsinx)=21−x2−2x+arcsinx+x1−x21=arcsin(x)
Author: crazyj7@gmail.com