D notation/operator
D[(D+2t)[t3−8]]
(D+2t)[D[t3−8]]
D(D+2t)=(D+2t)D
내부에 t가 있으면 교환법칙 성립안함.
D(D+2)=(D+2)D=D2+2D
내부에 t가 없으면 교환가능
(D+2)[(D−1)[t3−8]]
(D−1)[(D+2)[t3−8])
(D2+D−2)[t3−8]
(D+2)(D−1)=(D−1)(D+2)
(D+2)(D−1)=(D2+D−2)
System D.E.
{y′(t)=4x(t)−7y(t)+10tx′(t)=3x(t)−4y(t)+1}
{x′(t)y′(t)=3x(t)−4y(t)+1=4x(t)−7y(t)+10ty′′(t)=4x′−7y′+104x′=12x−16y+43y′=12x−21y+30t4x′−3y′=5y+4−30t4x′=3y′+5y+4−30ty′′=3y′+5y+4−30t−7y′+10y′′+4y′−5y=−30t+14found 2nd order LDE.
yh:r2+4r−5=0,(r−1)(r+5)=0r=1∨−5yh:et,e−5typform:At+By′=A,y′′=0y′′+4y′−5y=−30t+140+4A−5At−5B=−30t+14A=6,24−5B=14,B=2yp=6t+2y=Det+Ee−5t+6t+2
연립방정식에서 x DE를 y처럼 구할수도 있지만 y를 대입해서 구한다.y′(t)=4x(t)−7y(t)+10t4x(t)=y′+7y−10t=Det−5Ee−5t+6+7Det+7Ee−5t+42t+14−10t=2Ee−5t+8Det+32t+20x(t)=21Ee−5t+2Det+8t+5
Alt. Use D operator (D 연산자를 이용한 방식)
{x′(t)y′(t)=3x(t)−4y(t)+1=4x(t)−7y(t)+10t{x′−3x+4y−4x+y′+7y=1=10t{(D−3)(x)+4y−4x+(D+7)(y)=1=10t{4(D−3)(x)+16y(D−3)(−4x)+(D−3)(D+7)(y)=4=(D−3)(10t)
16y+(D−3)(D+7)(y)=(D−3)(10t)+416y+(D2+4D−21)y=10−30t+416y+y′′+4y′−21y=−30t+14y′′+4y′−5y=−30t+14
위와 동일한 2계 미방을 구했다. 이하 생략.
y′′+4y′−5y=14−30t
(D2+4D−5)y=14−30tD2(D2+4D−5)y=D2(14−30t)=0D2(D2+4D−5)=0D2(D+5)(D−1)=0D=0(repeated),1,−5yform:C,Ct,et,e−5typform:At+B(C, Ct same form.)input:ypy′′+4y′−5y=14−30t0+4A−5At−5B=14−30tA=6,B=2yp=6t+2y=C1et+C2e−5t+6t+2
system of differential equation.
Q {x′+y′−x−y=sin(t)x′+y′+2x=0}
{x′+y′+2x=0x′+y′−x−y=sin(t)(1)(2){(D+2)x+Dy=0(D−1)x+(D−1)y=sin(t)substract{(D−1)(D+2)x+(D−1)Dy=(D−1)0(D+2)(D−1)x+(D+2)(D−1)y=(D+2)sin(t)(D2−D)y−(D2+D−2)y=−(D+2)sin(t)y′′−y′−(y′′+y′−2y)=−(cos(t)+2sin(t))−2y′+2y=−cos(t)−2sin(t)
2y′−2y=cos(t)+2sin(t)(2D−2)y=cos(t)+2sin(t)yh:2r−2=0,r=1yh=C1etypform:yp=Acos(t)+Bsin(t)yp′=−Asin(t)+Bcos(t)2y′−2y=cos(t)+2sin(t)−2Asin(t)+2Bcos(t)−2Acos(t)−2Bsin(t)=cos(t)+2sin(t)(2B−2A)cos(t)+(−2A−2B)sin(t)=cos(t)+2sin(t)2B−2A=1,−2A−2B=2−4A=3,A=−43,2B+23=1,2B=−21B=−41∴y=C1et−43cos(t)−41sin(t)
Alternative.
−2y′+2y=−cos(t)−2sin(t)y′−y=21cos(t)+sin(t)Int.Factor=e∫−1dt=e−t(e−ty)′=e−t(21cos(t)+sin(t))e−ty=∫e−t(21cos(t)+sin(t))dt=21∫e−tcos(t)dt+∫e−tsin(t)dt∫e−tcos(t)dt=e−tsin(t)−(−e−t)(−cos(t))+∫e−t(−cos(t))dt∫e−tcos(t)dt=21e−t(sin(t)−cos(t))∫e−tsin(t)dt=e−t(−cos(t))−(−e−t)(−sin(t))+∫e−t(−sin(t))dt∫e−tsin(t)dt=−21e−t(cos(t)+sin(t))e−ty=41e−t(sin(t)−cos(t))−21e−t(cos(t)+sin(t))+C1y=41(sin(t)−cos(t))−21(cos(t)+sin(t))+C1et∴y=−43cos(t)−41sin(t)+C1etsame result. good.y′=C1et+43sin(t)−41cos(t)
And…
- Try to use EQ. (1)
x′+y′+2x=0x′+C1et+43sin(t)−41cos(t)+2x=0x′+2x=−C1et−43sin(t)+41cos(t)(D+2)x=−C1et−43sin(t)+41cos(t)xh:r+2=0,r=−2xh=Ee−2txpform=Aet+Bcos(t)+Csin(t)xp′=Aet−Bsin(t)+Ccos(t)x′+2x=−C1et−43sin(t)+41cos(t)Aet−Bsin(t)+Ccos(t)+2Aet+2Bcos(t)+2Csin(t)=−C1et−43sin(t)+41cos(t)3Aet−(B−2C)sin(t)+(2B+C)cos(t)=−C1et−43sin(t)+41cos(t)3A=−C1,B−2C=43,2B+C=414B+2C=42,5B=45,B=41,C=41−42=−41xp=−31C1et+41cos(t)−41sin(t)∴x(t)=Ee−2t−31C1et+41cos(t)−41sin(t)
But… e−2t ??? is Not the solution.
Alternative.
x′+2x=−C1et−43sin(t)+41cos(t)Int.Factor=e∫2dt=e2t(e2tx)′=−C1e3t−43e2tsin(t)+41e2tcos(t)e2tx=−C1∫e3tdt−43∫e2tsin(t)dt+41∫e2tcos(t)dt∫e2tsin(t)dt=e2t(−cos(t))−2e2t(−sin(t))+∫4e2t(−sin(t))dt5∫e2tsin(t)dt=e2t(−cos(t)+2sin(t))∫e2tsin(t)dt=51e2t(−cos(t)+2sin(t))∫e2tcos(t)dt=e2t(sin(t))−2e2t(−cos(t))+∫4e2t(−cos(t))dt5∫e2tcos(t)dt=e2t(sin(t)+2cos(t))∫e2tcos(t)dt=51e2t(sin(t)+2cos(t))∫e3ttdt=31∫eudu=31eu=31e3t∴e2tx=−C1∫e3tdt−43∫e2tsin(t)dt+41∫e2tcos(t)dt=−3C1e3t−203e2t(−cos(t)+2sin(t))+201e2t(sin(t)+2cos(t))+C2x=−3C1et−203(2sin(t)−cos(t))+201(sin(t)+2cos(t))+C2e−2tx=−3C1et−205sin(t)+205cos(t)+C2e−2tx=−3C1et−41sin(t)+41cos(t)+C2e−2te−2t found again ??
- Try to use EQ. (2)
x′+y′−x−y=sin(t)x′−x+y′−y=sin(t)x′−x+C1et+43sin(t)−41cos(t)−(−43cos(t)−41sin(t)+C1et)=sin(t)x′−x+sin(t)+21cos(t)=sin(t)x′−x=−21cos(t)IntegrationFactor=e−t(e−tx)′=−21e−tcos(t)e−tx=−21∫e−tcos(t)dte−tx=−21(21e−t(sin(t)−cos(t))+C3)x=41(cos(t)−sint(t))+C3et
alternative.
x′−x=−21cos(t)2x′−2x=−cos(t)1. find xh2x′−2x=0,(2D−2)x=02r−2=0,r=1xh=C3et2. find xpxp=Acost+Bsintxp′=−Asint+Bcost2x′−2x=−cos(t)2(−Asint+Bcost)−2(Acost+Bsint)=−cos(t)(2B−2A)cost+(−2A−2B)sint=−cost2B−2A=−1,−2A−2B=0,A=−B,4B=−1,B=−1/4,A=1/43. find xx=C3et+41cost−41sint
Q. {y′′=xy(0)=1y′(0)=−1x′′=yx(0)=3x′(0)=1}
D2(x)−y=0D2(y)−x=0D4(x)−D2(y)=0D4(x)−x=0(D4−1)(x)=0r4−1=0(r2−1)(r2+1)=0r=±1,r=±ix(t)=C1e−t+C2et+C3cos(t)+C4sin(t)x′(t)=−C1e−t+C2et−C3sin(t)+C4cos(t)x′′(t)=C1e−t+C2et−C3cos(t)−C4sin(t)x(0)=C1+C2+C3=3x′(0)=−C1+C2+C4=12C2+C3+C4=4y=D2(x)=C1e−t+C2et−C3cos(t)−C4sin(t)y′=−C1e−t+C2et+C3sin(t)−C4cos(t)y(0)=C1+C2−C3=1y′(0)=−C1+C2−C4=−12C2−C3−C4=04C2=4,C2=1C1+C3=2,C4−C1=0,C1=C4C1−C3=0,C1=C3=1∴x(t)=e−t+et+cos(t)+sin(t)y(t)=e−t+et−cos(t)−sin(t)
Author: crazyj7@gmail.com