Integral problems
1. ∫ tan 5 x sec 3 x d x \int \tan^5x \sec^3x dx ∫ tan 5 x sec 3 x d x
cf) d d x sec x = sec x tan x \frac{d}{dx} \sec{x}=\sec{x} \tan{x} d x d sec x = sec x tan x
1 + tan 2 x = sec 2 x = d d x tan x 1+\tan^2{x} = \sec^2{x}=\frac{d}{dx} \tan{x} 1 + tan 2 x = sec 2 x = d x d tan x
use sec x tan x \sec{x} \tan{x} sec x tan x part.
∫ tan 5 x sec 3 x d x = ∫ t a n 4 x s e c 2 x tan x sec x d x ( u = sec x , d u = sec x tan x d x ) = ∫ t a n 4 x s e c 2 x d u = ∫ ( sec 2 x − 1 ) 2 s e c 2 x d u = ∫ ( u 2 − 1 ) 2 u 2 d u = ∫ ( u 4 − 2 u 2 + 1 ) u 2 d u = ∫ u 6 − 2 u 4 + u 2 d u = 1 7 u 7 − 2 5 u 5 + 1 3 u 3 + C = 1 7 sec 7 x − 2 5 sec 5 x + 1 3 sec 3 x + C
\begin{aligned}
&\int \tan^5x \sec^3x dx\\
&=\int tan^4xsec^2x \tan{x} \sec{x} dx\\
&(u = \sec{x} , du = \sec{x}\tan{x}dx)\\
&=\int tan^4xsec^2x du\\
&=\int (\sec^2{x}-1)^2sec^2{x} du \\
&=\int (u^2-1)^2u^2du\\
&=\int (u^4-2u^2+1)u^2du\\
&=\int u^6-2u^4+u^2du\\
&=\frac{1}{7}u^7-\frac{2}{5}u^5+\frac{1}{3}u^3+C\\
&=\frac{1}{7}{\sec^7{x}}-\frac{2}{5}{\sec^5{x}}+\frac{1}{3}{\sec^3{x}}+C
\end{aligned}
∫ tan 5 x sec 3 x d x = ∫ t a n 4 x s e c 2 x tan x sec x d x ( u = sec x , d u = sec x tan x d x ) = ∫ t a n 4 x s e c 2 x d u = ∫ ( sec 2 x − 1 ) 2 s e c 2 x d u = ∫ ( u 2 − 1 ) 2 u 2 d u = ∫ ( u 4 − 2 u 2 + 1 ) u 2 d u = ∫ u 6 − 2 u 4 + u 2 d u = 7 1 u 7 − 5 2 u 5 + 3 1 u 3 + C = 7 1 sec 7 x − 5 2 sec 5 x + 3 1 sec 3 x + C
2. ∫ cos 2 x sin x + cos x d x \int \frac{\cos{2x}}{\sin{x}+\cos{x}}dx ∫ sin x + cos x cos 2 x d x
cf) cos 2 x = cos 2 x − sin 2 x = 1 − 2 sin 2 x = 2 c o s 2 x − 1 \cos{2x}=\cos^2{x}-\sin^2{x}=1-2\sin^2{x}=2cos^2{x}-1 cos 2 x = cos 2 x − sin 2 x = 1 − 2 sin 2 x = 2 c o s 2 x − 1
∫ cos 2 x sin x + cos x d x = ∫ cos 2 x ( cos x − sin x ) ( sin x + cos x ) ( cos x − sin x ) d x = ∫ cos 2 x ( cos x − sin x ) cos 2 x − sin 2 x d x = ∫ cos x − sin x d x = sin x + cos x + C
\begin{aligned}
&\int \frac{\cos{2x}}{\sin{x}+\cos{x}}dx\\
&=\int \frac{\cos{2x}(\cos{x}-\sin{x})} {(\sin{x}+\cos{x})(\cos{x}-\sin{x})}dx\\
&=\int \frac{\cos{2x}(\cos{x}-\sin{x})} {\cos^2{x}-\sin^2{x}}dx\\
&=\int \cos{x}-\sin{x}dx\\
&=\sin{x}+\cos{x}+C
\end{aligned}
∫ sin x + cos x cos 2 x d x = ∫ ( sin x + cos x ) ( cos x − sin x ) cos 2 x ( cos x − sin x ) d x = ∫ cos 2 x − sin 2 x cos 2 x ( cos x − sin x ) d x = ∫ cos x − sin x d x = sin x + cos x + C
3. ∫ x 2 + 1 x 4 − x 2 + 1 d x \int\frac{x^2+1}{x^4-x^2+1} dx ∫ x 4 − x 2 + 1 x 2 + 1 d x
cf)
( x 4 − x 2 + 1 ) ( x 4 + x 2 + 1 ) = x 8 − x 6 + x 4 + x 6 − x 4 + x 2 + x 4 − x 2 + 1 = x 8 + x 4 + 1
(x^4-x^2+1)(x^4+x^2+1)=\\
x^8-x^6+x^4+ x^6-x^4+x^2 +x^4-x^2+1\\
=x^8+x^4+1
( x 4 − x 2 + 1 ) ( x 4 + x 2 + 1 ) = x 8 − x 6 + x 4 + x 6 − x 4 + x 2 + x 4 − x 2 + 1 = x 8 + x 4 + 1
부분 분수로 나눠보자.
x 2 + 1 x 4 − x 2 + 1 = c x 2 + a x + 1 + d x 2 + b x + 1 ( 미 지 수 를 구 한 다 ) = 1 2 x 2 + 3 x + 1 + 1 2 x 2 − 3 x + 1
\frac{x^2+1}{x^4-x^2+1}\\
=\frac{c}{x^2+ax+1}+\frac{d}{x^2+bx+1}\\
(미지수를 구한다)\\
=\frac{\frac{1}{2}}{x^2+\sqrt{3}x+1}+\frac{\frac{1}{2}}{x^2-\sqrt{3}x+1}
x 4 − x 2 + 1 x 2 + 1 = x 2 + a x + 1 c + x 2 + b x + 1 d ( 미 지 수 를 구 한 다 ) = x 2 + 3 x + 1 2 1 + x 2 − 3 x + 1 2 1
따라서 적분을 취하면.
∫ x 2 + 1 x 4 − x 2 + 1 d x = 1 2 ∫ 1 x 2 + 3 x + 1 d x + 1 2 ∫ 1 x 2 − 3 x + 1 d x = 1 2 ∫ 1 ( x + 3 2 ) 2 + 1 4 d x + 1 2 ∫ 1 ( x − 3 2 ) 2 + 1 4 d x
\int\frac{x^2+1}{x^4-x^2+1} dx\\
=\frac{1}{2}\int \frac{1}{x^2+\sqrt{3}x+1}dx+\frac{1}{2}\int \frac{1}{x^2-\sqrt{3}x+1}dx\\
=\frac{1}{2}\int \frac{1}{ (x+\frac {\sqrt{3}}{2})^2+\frac{1}{4}}dx+\frac{1}{2}\int \frac{1}{ (x-\frac {\sqrt{3}}{2})^2+\frac{1}{4}}dx
∫ x 4 − x 2 + 1 x 2 + 1 d x = 2 1 ∫ x 2 + 3 x + 1 1 d x + 2 1 ∫ x 2 − 3 x + 1 1 d x = 2 1 ∫ ( x + 2 3 ) 2 + 4 1 1 d x + 2 1 ∫ ( x − 2 3 ) 2 + 4 1 1 d x
먼저 왼쪽 부분을 계산해 보자. 제곱의 형태를 삼각치환해 보자. (1+tan^x 꼴로 만든다.)
1 2 tan θ = x + 3 2 \frac{1}{2}\tan\theta=x+\frac{\sqrt{3}}{2} 2 1 tan θ = x + 2 3
d x = 1 2 sec 2 θ d θ dx = \frac{1}{2}\sec^2\theta d\theta d x = 2 1 sec 2 θ d θ
We know ∫ 1 1 + x 2 d x = tan − 1 x + C \int \frac{1}{1+x^2}dx = \tan^{-1}x+C ∫ 1 + x 2 1 d x = tan − 1 x + C .
1 2 ∫ 1 ( x + 3 2 ) 2 + 1 4 d x = 1 2 ∫ 1 1 4 tan 2 θ + 1 4 d x = 1 2 ∫ 1 1 4 sec 2 θ 1 2 sec 2 θ d θ = θ + C = tan − 1 ( 2 x + 3 ) + C
\frac{1}{2}\int \frac{1}{ (x+\frac {\sqrt{3}}{2})^2+\frac{1}{4}}dx\\
=\frac{1}{2}\int \frac{1}{\frac{1}{4}\tan^2\theta+\frac{1}{4}}dx\\
=\frac{1}{2}\int \frac{1}{\frac{1}{4}\sec^2\theta} \frac{1}{2}\sec^2\theta d\theta \\
=\theta+C = \tan^{-1}(2x+\sqrt{3})+C
2 1 ∫ ( x + 2 3 ) 2 + 4 1 1 d x = 2 1 ∫ 4 1 tan 2 θ + 4 1 1 d x = 2 1 ∫ 4 1 sec 2 θ 1 2 1 sec 2 θ d θ = θ + C = tan − 1 ( 2 x + 3 ) + C
오른쪽 부분도 같은 방식으로 계산하면 된다.
1 2 ∫ 1 ( x − 3 2 ) 2 + 1 4 d x = tan − 1 ( 2 x − 3 ) + C
\frac{1}{2}\int \frac{1}{ (x-\frac {\sqrt{3}}{2})^2+\frac{1}{4}}dx\\
= \tan^{-1}(2x-\sqrt{3})+C
2 1 ∫ ( x − 2 3 ) 2 + 4 1 1 d x = tan − 1 ( 2 x − 3 ) + C
∴ ∫ x 2 + 1 x 4 − x 2 + 1 d x = tan − 1 ( 2 x + 3 ) + tan − 1 ( 2 x − 3 ) + C
\therefore
\int\frac{x^2+1}{x^4-x^2+1} dx\\
=\tan^{-1}(2x+\sqrt{3})+\tan^{-1}(2x-\sqrt{3})+C
∴ ∫ x 4 − x 2 + 1 x 2 + 1 d x = tan − 1 ( 2 x + 3 ) + tan − 1 ( 2 x − 3 ) + C
Check!!!
d d x tan − 1 ( 2 x + 3 ) + tan − 1 ( 2 x − 3 ) + C = 1 1 + ( 2 x + 3 ) 2 2 + 1 1 + ( 2 x − 3 ) 2 2 = 2 4 + 4 3 x + 4 x 2 + 2 4 − 4 3 x + 4 x 2 = 1 2 + 2 3 x + 2 x 2 + 1 2 − 2 3 x + 2 x 2 = 4 x 2 + 4 4 x 4 − 4 x 2 + 4 = x 2 + 1 x 4 − x 2 + 1
\begin{aligned}
&\frac{d}{dx} \tan^{-1}(2x+\sqrt{3})+\tan^{-1}(2x-\sqrt{3})+C\\
&= \frac{1}{1+(2x+\sqrt{3})^2}2+\frac{1}{1+(2x-\sqrt{3})^2}2\\
&= \frac{2}{4+4\sqrt{3}x+4x^2}+\frac{2}{4-4\sqrt{3}x+4x^2}\\
&= \frac{1}{2+2\sqrt{3}x+2x^2}+\frac{1}{2-2\sqrt{3}x+2x^2}\\
&= \frac{4x^2+4}{4x^4-4x^2+4}\\
&= \frac{x^2+1}{x^4-x^2+1}
\end{aligned}
d x d tan − 1 ( 2 x + 3 ) + tan − 1 ( 2 x − 3 ) + C = 1 + ( 2 x + 3 ) 2 1 2 + 1 + ( 2 x − 3 ) 2 1 2 = 4 + 4 3 x + 4 x 2 2 + 4 − 4 3 x + 4 x 2 2 = 2 + 2 3 x + 2 x 2 1 + 2 − 2 3 x + 2 x 2 1 = 4 x 4 − 4 x 2 + 4 4 x 2 + 4 = x 4 − x 2 + 1 x 2 + 1
다른 솔루션. (divide by x^2)
x 2 + 1 x 4 − x 2 + 1 = 1 + 1 x 2 x 2 − 1 + 1 x 2 = 1 + 1 x 2 x 2 − 2 + 1 x 2 + 1 = 1 + 1 x 2 ( x − 1 x ) 2 + 1
\begin{aligned}
&\frac{x^2+1}{x^4-x^2+1}=
\frac{1+\frac{1}{x^2} }{x^2-1+\frac{1}{x^2}}\\
&=\frac{1+\frac{1}{x^2} }{x^2-2+\frac{1}{x^2}+1}\\
&=\frac{1+\frac{1}{x^2} }{ (x-\frac{1}{x})^2+1}\\
\end{aligned}
x 4 − x 2 + 1 x 2 + 1 = x 2 − 1 + x 2 1 1 + x 2 1 = x 2 − 2 + x 2 1 + 1 1 + x 2 1 = ( x − x 1 ) 2 + 1 1 + x 2 1
u = x − 1 x d u = ( 1 + 1 x 2 ) d x u=x-\frac{1}{x} \quad du=(1+\frac{1}{x^2}) dx u = x − x 1 d u = ( 1 + x 2 1 ) d x
∫ x 2 + 1 x 4 − x 2 + 1 d x = ∫ 1 + 1 x 2 ( x − 1 x ) 2 + 1 d x = ∫ 1 u 2 + 1 d u = tan − 1 u + C = tan − 1 ( x − 1 x ) + C
\begin{aligned}
&\int \frac{x^2+1}{x^4-x^2+1} dx\\
&=\int \frac{1+\frac{1}{x^2} }{ (x-\frac{1}{x})^2+1} dx\\
&=\int \frac{1}{u^2+1} du \\
&=\tan^{-1} {u} +C \\
&=\tan^{-1} ({x-\frac{1}{x}}) +C
\end{aligned}
∫ x 4 − x 2 + 1 x 2 + 1 d x = ∫ ( x − x 1 ) 2 + 1 1 + x 2 1 d x = ∫ u 2 + 1 1 d u = tan − 1 u + C = tan − 1 ( x − x 1 ) + C
4. ∫ ( x + e x ) 2 d x \int (x+e^x)^2dx ∫ ( x + e x ) 2 d x
∫ ( x + e x ) 2 d x = ∫ x 2 + 2 x e x + e 2 x d x = 1 3 x 3 + 2 ∫ x e x d x + 1 2 e 2 x + C = 1 3 x 3 + 2 ( x e x − ∫ e x d x ) + 1 2 e 2 x + C = 1 3 x 3 + 2 ( x e x − e x ) + 1 2 e 2 x + C
\begin{aligned}
&\int (x+e^x)^2dx\\
&=\int x^2+2xe^x+e^{2x} dx\\
&=\frac{1}{3}x^3+2\int xe^x dx+\frac{1}{2}e^{2x}+C\\
&=\frac{1}{3}x^3+2(xe^x-\int e^x dx)+\frac{1}{2}e^{2x}+C\\
&=\frac{1}{3}x^3+2(xe^x- e^x)+\frac{1}{2}e^{2x}+C
\end{aligned}
∫ ( x + e x ) 2 d x = ∫ x 2 + 2 x e x + e 2 x d x = 3 1 x 3 + 2 ∫ x e x d x + 2 1 e 2 x + C = 3 1 x 3 + 2 ( x e x − ∫ e x d x ) + 2 1 e 2 x + C = 3 1 x 3 + 2 ( x e x − e x ) + 2 1 e 2 x + C
5. ∫ csc 3 x sec x d x \int \csc^3{x} \sec{x} dx ∫ csc 3 x sec x d x
∫ csc 3 x sec x d x = ∫ 1 sin 3 x cos x d x = ∫ cos 2 x + sin 2 x sin 3 x cos x d x = ∫ cot 2 x + 1 sin x cos x d x = ∫ cot 2 x sin x cos x d x + ∫ 1 sin x cos x d x = ∫ 1 sin x cos x d x + ∫ cos 2 x sin 2 x sin x cos x d x
\begin{aligned}
&\int \csc^3{x} \sec{x} dx \\
&= \int \frac{1}{\sin^3{x}\cos{x}} dx\\
&= \int \frac{\cos^2x+\sin^2x}{\sin^3{x}\cos{x}} dx\\
&= \int \frac{\cot^2x+1}{\sin{x}\cos{x}} dx\\
&=\int \frac{\cot^2x}{\sin{x}\cos{x}}dx+\int \frac{1}{\sin{x}\cos{x}} dx\\
&= \int \frac{1}{\sin{x}\cos{x}} dx + \int \frac{\cos^2{x}}{\sin^2{x}\sin{x}\cos{x}} dx\\
\end{aligned}
∫ csc 3 x sec x d x = ∫ sin 3 x cos x 1 d x = ∫ sin 3 x cos x cos 2 x + sin 2 x d x = ∫ sin x cos x cot 2 x + 1 d x = ∫ sin x cos x cot 2 x d x + ∫ sin x cos x 1 d x = ∫ sin x cos x 1 d x + ∫ sin 2 x sin x cos x cos 2 x d x
(이하는 아래 계산 과정과 동일)
1 + tan 2 x = s e c 2 x 1+\tan^2{x}=sec^2{x} 1 + tan 2 x = s e c 2 x
1 + cot 2 x = c s c 2 x 1+\cot^2{x}=csc^2{x} 1 + cot 2 x = c s c 2 x
∫ csc 3 x sec x d x = ∫ ( 1 + cot 2 x ) csc x sec x d x = ∫ csc x sec x + cot 2 x csc x sec x d x = ∫ csc x sec x d x + ∫ cot 2 x csc x sec x d x = ∫ 1 sin x cos x d x + ∫ cos 2 x sin 2 x sin x cos x d x = ∫ cos x sin x + sin x cos x d x + ∫ cos x sin 3 x d x = ∫ cot x d x + ∫ tan x d x + ∫ cos x sin 3 x d x = ln ∣ sin x ∣ − ln ∣ cos x ∣ + ∫ cos x sin 3 x d x
\begin{aligned}
&\int \csc^3{x} \sec{x} dx \\
&= \int (1+\cot^2{x})\csc{x} \sec{x} dx\\
&= \int \csc{x} \sec{x} + \cot^2{x}\csc{x} \sec{x} dx\\
&= \int \csc{x} \sec{x} dx + \int \cot^2{x}\csc{x} \sec{x} dx\\
&= \int \frac{1}{\sin{x}\cos{x}} dx + \int \frac{\cos^2{x}}{\sin^2{x}\sin{x}\cos{x}} dx\\
&= \int \frac{\cos{x}}{\sin{x}}+\frac{\sin{x}}{\cos{x}} dx + \int \frac{\cos{x}}{\sin^3{x}} dx\\
&=\int \cot{x} dx + \int \tan{x} dx +\int \frac{\cos{x}}{\sin^3{x}} dx\\
&=\ln|\sin{x}| - \ln |\cos{x}|+\int \frac{\cos{x}}{\sin^3{x}} dx\\
\end{aligned}
∫ csc 3 x sec x d x = ∫ ( 1 + cot 2 x ) csc x sec x d x = ∫ csc x sec x + cot 2 x csc x sec x d x = ∫ csc x sec x d x + ∫ cot 2 x csc x sec x d x = ∫ sin x cos x 1 d x + ∫ sin 2 x sin x cos x cos 2 x d x = ∫ sin x cos x + cos x sin x d x + ∫ sin 3 x cos x d x = ∫ cot x d x + ∫ tan x d x + ∫ sin 3 x cos x d x = ln ∣ sin x ∣ − ln ∣ cos x ∣ + ∫ sin 3 x cos x d x
∫ cos x sin 3 x d x ( u = sin x d u = cos x d x ) = ∫ 1 u 3 d u = − 1 2 u 2 = − 1 2 sin 2 x
\begin{aligned}
&\int \frac{\cos{x}}{\sin^3{x}} dx\\
&(u = \sin{x} \quad du = \cos{x} dx)\\
&=\int \frac{1}{u^3} du \\
&=-\frac{1}{2u^2} = -\frac{1}{2\sin^2{x}}
\end{aligned}
∫ sin 3 x cos x d x ( u = sin x d u = cos x d x ) = ∫ u 3 1 d u = − 2 u 2 1 = − 2 sin 2 x 1
So,
= ln ∣ sin x ∣ − ln ∣ cos x ∣ + ∫ cos x sin 3 x d x = ln ∣ sin x ∣ − ln ∣ cos x ∣ − 1 2 sin 2 x + C = ln ∣ sin x ∣ − ln ∣ cos x ∣ − 1 2 csc 2 x + C = − 1 2 csc 2 x + ln ∣ sin x ∣ − ln ∣ cos x ∣ + C = − 1 2 csc 2 x + ln ∣ tan x ∣ + C
=\ln|\sin{x}| - \ln |\cos{x}|+\int \frac{\cos{x}}{\sin^3{x}} dx\\
=\ln|\sin{x}| - \ln |\cos{x}|-\frac{1}{2\sin^2{x}}+C\\
=\ln|\sin{x}| - \ln |\cos{x}|-\frac{1}{2}\csc^2{x}+C\\
=-\frac{1}{2}\csc^2{x}+\ln|\sin{x}| - \ln |\cos{x}|+C\\
=-\frac{1}{2}\csc^2{x}+\ln|\tan{x}| +C
= ln ∣ sin x ∣ − ln ∣ cos x ∣ + ∫ sin 3 x cos x d x = ln ∣ sin x ∣ − ln ∣ cos x ∣ − 2 sin 2 x 1 + C = ln ∣ sin x ∣ − ln ∣ cos x ∣ − 2 1 csc 2 x + C = − 2 1 csc 2 x + ln ∣ sin x ∣ − ln ∣ cos x ∣ + C = − 2 1 csc 2 x + ln ∣ tan x ∣ + C
6. ∫ cos x sin 2 x − 5 sin x − 6 d x \int\frac{\cos{x}}{\sin^2{x}-5\sin{x}-6}dx ∫ sin 2 x − 5 sin x − 6 cos x d x
∫ cos x sin 2 x − 5 sin x − 6 d x = ∫ cos x ( sin x − 6 ) ( sin x + 1 ) d x ( u = sin x d u = cos x d x ) = ∫ 1 ( u − 6 ) ( u + 1 ) d u 1 ( u − 6 ) ( u + 1 ) = a u − 6 + b u + 1 a + b = 0 , a − 6 b = 1 , 7 a = 1 , a = 1 7 , b = − 1 7 = 1 7 ∫ 1 u − 6 d x − 1 7 ∫ 1 u + 1 d x = 1 7 ln ∣ u − 6 ∣ − 1 7 ln ∣ u + 1 ∣ + C = 1 7 ln ∣ sin x − 6 ∣ − 1 7 ln ∣ sin x + 1 ∣ + C = 1 7 ln ∣ sin x − 6 sin x + 1 ∣ + C
\begin{aligned}
&\int\frac{\cos{x}}{\sin^2{x}-5\sin{x}-6}dx\\
&=\int \frac{\cos{x}}{(\sin{x}-6)(\sin{x}+1)}dx\\
& (u = \sin{x} \quad du = \cos{x} dx) \\
&=\int \frac {1} {(u-6)(u+1)} du\\
& \frac {1} {(u-6)(u+1)} = \frac{a}{u-6}+\frac{b}{u+1}\\
&a+b=0, a-6b=1, 7a=1, a=\frac{1}{7}, b=-\frac{1}{7}\\
&=\frac{1}{7}\int \frac{1}{u-6}dx -\frac{1}{7}\int \frac{1}{u+1} dx \\
&=\frac{1}{7} \ln|u-6|-\frac{1}{7}\ln|u+1|+C\\
&=\frac{1}{7} \ln |\sin{x}-6|-\frac{1}{7}\ln|\sin{x}+1|+C\\
&=\frac{1}{7} \ln \big | \frac{\sin{x}-6}{\sin{x}+1} \big |+C
\end{aligned}
∫ sin 2 x − 5 sin x − 6 cos x d x = ∫ ( sin x − 6 ) ( sin x + 1 ) cos x d x ( u = sin x d u = cos x d x ) = ∫ ( u − 6 ) ( u + 1 ) 1 d u ( u − 6 ) ( u + 1 ) 1 = u − 6 a + u + 1 b a + b = 0 , a − 6 b = 1 , 7 a = 1 , a = 7 1 , b = − 7 1 = 7 1 ∫ u − 6 1 d x − 7 1 ∫ u + 1 1 d x = 7 1 ln ∣ u − 6 ∣ − 7 1 ln ∣ u + 1 ∣ + C = 7 1 ln ∣ sin x − 6 ∣ − 7 1 ln ∣ sin x + 1 ∣ + C = 7 1 ln ∣ ∣ sin x + 1 sin x − 6 ∣ ∣ + C
7. ∫ 1 e x d x \int \frac{1}{\sqrt{e^x}} dx ∫ e x 1 d x
∫ 1 e x d x = ∫ e − x 2 d x = 1 − 1 2 e − x 2 = − 2 e − x 2 = − 2 e x + C
\begin{aligned}
&\int \frac{1}{\sqrt{e^x}} dx\\
&= \int e^{-\frac{x}{2}} dx \\
&= \frac{1}{-\frac{1}{2}} e^{-\frac{x}{2}}\\
&=-2e^{-\frac{x}{2}}\\
&= -\frac{2}{\sqrt{e^x}}+C
\end{aligned}
∫ e x 1 d x = ∫ e − 2 x d x = − 2 1 1 e − 2 x = − 2 e − 2 x = − e x 2 + C
8. ∫ e x e x − 1 e x + 3 d x \int \frac{e^x \sqrt{e^x-1}}{e^x+3} dx ∫ e x + 3 e x e x − 1 d x
∫ e x e x − 1 e x + 3 d x u = e x − 1 , d u = 1 2 1 e x − 1 e x d x Q = ∫ u u 2 + 4 2 e x − 1 d u = 2 ∫ u 2 u 2 + 4 d u = 2 ∫ u 2 + 4 − 4 u 2 + 4 d u = 2 ∫ 1 − 4 u 2 + 4 d u = 2 [ u − 4 ∫ 1 u 2 + 2 2 d u ] + C = 2 [ u − 4 1 2 arctan u 2 ] + C = 2 u − 4 arctan u 2 + C = 2 e x − 1 − 4 arctan e x − 1 2 + C
\begin{aligned}
&\int \frac{e^x \sqrt{e^x-1}}{e^x+3} dx\\
&u=\sqrt{e^x-1}, \quad du=\frac{1}{2} \frac{1}{\sqrt{e^x-1} } e^x dx\\
Q&=\int \frac{u}{u^2+4} 2 \sqrt{e^x-1} du\\
&=2\int \frac{u^2}{u^2+4} du\\
&=2\int \frac{u^2+4-4}{u^2+4} du\\
&=2\int 1-\frac{4}{u^2+4} du \\
&=2 \left [ u-4\int \frac{1}{u^2+2^2} du \right ] +C\\
&=2 \left [ u-4 \frac{1}{2} \arctan \frac{u}{2} \right ] +C\\
&=2u-4\arctan \frac{u}{2} +C \\
&=2\sqrt{e^x-1}-4\arctan \frac{\sqrt{e^x-1}}{2} +C \\
\end{aligned}
Q ∫ e x + 3 e x e x − 1 d x u = e x − 1 , d u = 2 1 e x − 1 1 e x d x = ∫ u 2 + 4 u 2 e x − 1 d u = 2 ∫ u 2 + 4 u 2 d u = 2 ∫ u 2 + 4 u 2 + 4 − 4 d u = 2 ∫ 1 − u 2 + 4 4 d u = 2 [ u − 4 ∫ u 2 + 2 2 1 d u ] + C = 2 [ u − 4 2 1 arctan 2 u ] + C = 2 u − 4 arctan 2 u + C = 2 e x − 1 − 4 arctan 2 e x − 1 + C
Again…
∫ e x e x − 1 e x + 3 d x ( u = e x − 1 , d u = e x d x ) Q = ∫ u u + 4 d u ( t = u , d t = 1 2 u d u , d u = 2 u d t ) = 2 ∫ t 2 t 2 + 4 d t = 2 ∫ 1 1 + 4 t 2 d t = 2 ∫ 1 1 + ( 2 t ) 2 d t ( s = 2 t , t = 2 s , d s = − 2 t 2 d t ) = 2 ∫ 1 1 + s 2 ( − t 2 2 ) d s = − ∫ t 2 1 + s 2 d s = − ∫ 4 s 2 1 + s 2 d s = − 4 ∫ 1 s 2 ( 1 + s 2 ) d s = − 4 ∫ 1 s 2 − 1 1 + s 2 d s = − 4 ∫ 1 s 2 d s + 4 ∫ 1 1 + s 2 d s = − 4 ( − 1 ) 1 s + 4 arctan s + C = 4 2 t + 4 arctan 2 t + C = 2 t + 4 arctan 2 t + C = 2 u + 4 arctan 2 u + C = 2 e x − 1 + 4 arctan 2 e x − 1 + C F a i l Where is Incorrect?
\begin{aligned}
&\int \frac{e^x \sqrt{e^x-1}}{e^x+3} dx\\
& (u=e^x-1, \quad du=e^xdx) \\
Q&=\int \frac{\sqrt{u}}{u+4} du\\
& (t = \sqrt{u} , \quad dt = \frac{1}{2\sqrt{u}} du, du=2\sqrt{u}dt) \\
&=2\int \frac{t^2}{t^2+4} dt =2\int \frac{1}{1+\frac{4}{t^2}} dt=2\int \frac{1}{1+(\frac{2}{t})^2} dt\\
&(s=\frac{2}{t}, t=\frac{2}{s} , ds =-\frac{2}{t^2}dt )\\
&=2\int \frac{1}{1+s^2} (-\frac{t^2}{2}) ds \\
&=-\int \frac{t^2}{1+s^2} ds =-\int \frac{\frac{4}{s^2}}{1+s^2} ds\\
&=-4\int \frac{1}{s^2(1+s^2)}ds =-4\int \frac{1}{s^2}-\frac{1}{1+s^2} ds \\
&=-4\int\frac{1}{s^2} ds+4 \int \frac{1}{1+s^2} ds \\
&=-4(-1)\frac{1}{s}+4 \arctan{s} +C \\
&=\frac{4}{\frac{2}{t}} + 4 \arctan{ \frac{2}{t} } +C
=2t + 4 \arctan \frac{2}{t} +C \\
&= 2 \sqrt{u} + 4 \arctan \frac{2}{\sqrt{u}} +C\\
&= 2 \sqrt{e^x-1} + 4 \arctan \frac{2}{\sqrt{e^x-1}} +C\\
\end{aligned}
\\Fail\\
\text{Where is Incorrect?} \\
Q ∫ e x + 3 e x e x − 1 d x ( u = e x − 1 , d u = e x d x ) = ∫ u + 4 u d u ( t = u , d t = 2 u 1 d u , d u = 2 u d t ) = 2 ∫ t 2 + 4 t 2 d t = 2 ∫ 1 + t 2 4 1 d t = 2 ∫ 1 + ( t 2 ) 2 1 d t ( s = t 2 , t = s 2 , d s = − t 2 2 d t ) = 2 ∫ 1 + s 2 1 ( − 2 t 2 ) d s = − ∫ 1 + s 2 t 2 d s = − ∫ 1 + s 2 s 2 4 d s = − 4 ∫ s 2 ( 1 + s 2 ) 1 d s = − 4 ∫ s 2 1 − 1 + s 2 1 d s = − 4 ∫ s 2 1 d s + 4 ∫ 1 + s 2 1 d s = − 4 ( − 1 ) s 1 + 4 arctan s + C = t 2 4 + 4 arctan t 2 + C = 2 t + 4 arctan t 2 + C = 2 u + 4 arctan u 2 + C = 2 e x − 1 + 4 arctan e x − 1 2 + C F a i l Where is Incorrect?
Where is incorrect?? … No. It’s all right.
arctan 1 x = π 2 − arctan x , ( x > 0 )
\arctan{\frac{1}{x}} = \frac{\pi}{2}-\arctan{x} ,(x>0)
arctan x 1 = 2 π − arctan x , ( x > 0 )
So, Integration constant is ignored.
= 2 e x − 1 + 4 arctan 2 e x − 1 + C = 2 e x − 1 + 4 ( π 2 − arctan e x − 1 2 ) + C = 2 e x − 1 − 4 arctan e x − 1 2 + 2 π + C = 2 e x − 1 − 4 arctan e x − 1 2 + C 2
\begin{aligned}
&= 2 \sqrt{e^x-1} + 4 \arctan \frac{2}{\sqrt{e^x-1}} +C\\
&= 2 \sqrt{e^x-1} + 4 ( \frac{\pi}{2}-\arctan \frac{\sqrt{e^x-1}}{2}) +C\\
&= 2 \sqrt{e^x-1} - 4\arctan \frac{\sqrt{e^x-1}}{2}+2\pi +C\\
&= 2 \sqrt{e^x-1} - 4\arctan \frac{\sqrt{e^x-1}}{2} +C_2\\
\end{aligned}
= 2 e x − 1 + 4 arctan e x − 1 2 + C = 2 e x − 1 + 4 ( 2 π − arctan 2 e x − 1 ) + C = 2 e x − 1 − 4 arctan 2 e x − 1 + 2 π + C = 2 e x − 1 − 4 arctan 2 e x − 1 + C 2
9. ∫ 1 x + x d x \int \frac{1}{x+\sqrt{x}} dx ∫ x + x 1 d x
∫ 1 x + x d x ( t = x , t 2 = x , d t = 1 2 x d x ) = ∫ 1 t 2 + t 2 x d t = ∫ 2 t t 2 + t d t = 2 ∫ 1 1 + t d t = 2 ln ∣ 1 + t ∣ + C = 2 ln ∣ 1 + x ∣ + C
\begin{aligned}
&\int \frac{1}{x+\sqrt{x}} dx\\
& (t=\sqrt{x}, t^2=x, dt=\frac{1}{2\sqrt{x}}dx)\\
&=\int \frac{1}{t^2+t}{2\sqrt{x}}dt=\int \frac{2t}{t^2+t}dt\\
&=2\int \frac{1}{1+t}dt=2\ln|1+t|+C\\
&=2\ln|1+\sqrt{x}|+C
\end{aligned}
∫ x + x 1 d x ( t = x , t 2 = x , d t = 2 x 1 d x ) = ∫ t 2 + t 1 2 x d t = ∫ t 2 + t 2 t d t = 2 ∫ 1 + t 1 d t = 2 ln ∣ 1 + t ∣ + C = 2 ln ∣ 1 + x ∣ + C
10. ∫ − 1 5 ∣ x − 3 ∣ d x \int_{-1}^{5}|x-3| dx ∫ − 1 5 ∣ x − 3 ∣ d x
∫ − 1 5 ∣ x − 3 ∣ d x = ∫ − 1 3 ∣ x − 3 ∣ d x + ∫ 3 5 ∣ x − 3 ∣ d x = ∫ − 1 3 3 − x d x + ∫ 3 5 x − 3 d x = [ 3 x − x 2 2 ] − 1 3 + [ x 2 2 − 3 x ] 3 5 = ( 9 − 9 2 ) − ( − 3 − 1 2 ) + ( 25 2 − 15 ) − ( 9 2 − 9 ) = 9 2 + 7 2 − 5 2 + 9 2 = 10
\begin{aligned}
&\int_{-1}^{5}|x-3| dx \\
&=\int_{-1}^{3} |x-3|dx + \int_{3}^{5} |x-3| dx\\
&=\int_{-1}^{3} 3-x dx + \int_{3}^{5} x-3 dx\\
&=\left[ 3x-\frac{x^2}{2} \right]_{-1}^{3} + \left[ \frac{x^2}{2}-3x \right]_{3}^{5} \\
&=(9-\frac{9}{2})-(-3-\frac{1}{2})+(\frac{25}{2}-15)-(\frac{9}{2}-9)\\
&=\frac{9}{2}+\frac{7}{2}-\frac{5}{2}+\frac{9}{2}\\
&=10
\end{aligned}
∫ − 1 5 ∣ x − 3 ∣ d x = ∫ − 1 3 ∣ x − 3 ∣ d x + ∫ 3 5 ∣ x − 3 ∣ d x = ∫ − 1 3 3 − x d x + ∫ 3 5 x − 3 d x = [ 3 x − 2 x 2 ] − 1 3 + [ 2 x 2 − 3 x ] 3 5 = ( 9 − 2 9 ) − ( − 3 − 2 1 ) + ( 2 2 5 − 1 5 ) − ( 2 9 − 9 ) = 2 9 + 2 7 − 2 5 + 2 9 = 1 0
Author: crazyj7@gmail.com