11. ∫sinxsec2019xdx\int \frac{\sin{x}}{\sec^{2019}x}dx
∫sinxsec2019xdx=∫sinxcos2019xdx(u=cosx,du=−sinxdx)=−∫u2019du=−12020u2020+C=−12020cos2020x+C \begin{aligned} &\int \frac{\sin{x}}{\sec^{2019}x}dx\\ &=\int \sin{x}\cos^{2019}x dx\\ &(u=\cos x, du=-\sin x dx)\\ &=-\int u^{2019} du\\ &=-\frac{1}{2020}u^{2020}+C\\ &=-\frac{1}{2020}\cos^{2020}x+C\\ \end{aligned}
12. ∫xsin−1x1−x2dx\int \frac{x\sin^{-1}{x}}{\sqrt{1-x^2}} dx
∫xsin−1x1−x2dx(x=sinθ,dx=cosθdθ)(cosθ=1−sin2θ=1−x2)=∫sinθsin−1sinθ1−sin2θcosθdθ=∫θsinθdθ=θ(−cosθ)−(−sinθ)+C=sinθ−θcosθ+C=x−sin−1(x)1−x2+C \begin{aligned} &\int \frac{x\sin^{-1}{x}}{\sqrt{1-x^2}} dx\\ &(x = sin \theta, dx=\cos\theta d\theta)\\ &(cos \theta = \sqrt{1-\sin^2\theta} = \sqrt{1-x^2} )\\ &=\int \frac{\sin\theta \sin^{-1}{\sin\theta}}{\sqrt{1-\sin^2\theta}} \cos\theta d\theta\\ &=\int \theta \sin\theta d\theta \\ &=\theta (-\cos\theta)-(-\sin\theta)+C\\ &=\sin\theta -\theta\cos\theta +C\\ &=x-\sin^{-1}(x)\sqrt{1-x^2} +C\\ \end{aligned}
13. ∫2sinxsin2xdx\int \frac{2\sin{x}}{\sin{2x}}dx
∫2sinxsin2xdx=∫2sinx2sinxcosxdx=∫1cosxdx \begin{aligned} &\int \frac{2\sin{x}}{\sin{2x}}dx\\ &=\int \frac{2\sin{x}}{2\sin{x}\cos{x}}dx\\ &=\int \frac{1}{\cos{x}}dx \end{aligned}
=∫secxdx=\int \sec{x}dx
=∫cosxcos2xdx=∫cosx1−sin2xdx(u=sinx,du=cosxdx)=∫11−u2du=∫1(1−u)(1+u)u=∫12(11−u+11+u)du=12(−ln∣1−u∣+ln∣1+u∣)+C=12ln∣1+u1−u∣+C=12ln∣1+sinx1−sinx∣+C \begin{aligned} &=\int \frac{\cos{x}}{\cos^2{x}}dx=\int \frac{\cos{x}}{1-\sin^2{x}}dx \\ &(u=\sin{x} , du=\cos{x}dx) \\ &=\int \frac{1}{1-u^2} du = \int \frac{1}{(1-u)(1+u)} u\\ &= \int \frac{1}{2} \left(\frac{1}{1-u} + \frac{1}{1+u} \right) du\\ &=\frac{1}{2} (-\ln|1-u|+ln|1+u|)+C\\ &=\frac{1}{2} \ln |\frac{1+u}{1-u}|+C\\ &=\frac{1}{2} \ln \left|\frac{1+\sin{x}}{1-\sin{x}} \right|+C\\ \end{aligned}
Alternatives…
ln(sinx2+cosx2)−ln(cosx2−sinx2)=ln∣sinx2+cosx2cosx2−sinx2∣=ln∣(sinx2+cosx2)2cos2x2−sin2x2∣=ln∣1+2sinx2cosx2cos2x2−sin2x2∣=ln∣1+sinxcosx∣ \ln(\sin\frac{x}{2}+cos\frac{x}{2})-\ln( cos\frac{x}{2}-sin\frac{x}{2})\\ = \ln \left| \frac{\sin\frac{x}{2}+cos\frac{x}{2}}{cos\frac{x}{2}-sin\frac{x}{2}} \right| \\ = \ln \left| \frac{(\sin\frac{x}{2}+cos\frac{x}{2})^2}{cos^2\frac{x}{2}-sin^2\frac{x}{2}} \right| \\ = \ln \left| \frac{1+2sin\frac{x}{2}cos\frac{x}{2}}{cos^2\frac{x}{2}-sin^2\frac{x}{2}} \right| \\ = \ln \left| \frac{1+\sin{x}}{\cos{x}} \right| \\
12ln∣1+sinx1−sinx∣=ln∣1+sinx1−sinx∣=ln∣1+sinx1+sinx1−sinx1+sinx∣=ln∣1+sinx1−sin2x∣=ln∣1+sinxcosx∣=ln∣secx+tanx∣ \frac{1}{2} \ln \left|\frac{1+\sin{x}}{1-\sin{x}} \right|\\ = \ln \left|\frac{\sqrt{1+\sin{x}}}{\sqrt{1-\sin{x}}} \right| \\ = \ln \left|\frac{\sqrt{1+\sin{x}}\sqrt{1+\sin{x}}}{\sqrt{1-\sin{x}}\sqrt{1+\sin{x}}} \right| \\ = \ln \left|\frac{1+\sin{x}}{\sqrt{1-\sin^2{x}}} \right| \\ = \ln \left|\frac{1+\sin{x}}{\cos{x}} \right| \\ = \ln \left| \sec{x}+\tan{x} \right| \\
14. ∫cos22xdx\int \cos^2{2x} dx
∫cos22xdx=∫1+cos4x2dx=12x+12∫cos4xdx=12x+1214sin4x+C=12x+18sin4x+C \begin{aligned} &\int \cos^2{2x} dx \\ &=\int \frac{1+\cos{4x}}{2} dx\\ &=\frac{1}{2}x+\frac{1}{2}\int \cos{4x}dx\\ &=\frac{1}{2}x+\frac{1}{2}\frac{1}{4}\sin{4x}+C \\ &=\frac{1}{2}x+\frac{1}{8}\sin{4x}+C \\ \end{aligned}
Check…
ddx[12x+18sin4x]=12+12cos4x=1+cos4x2=cos22x \frac{d}{dx} [ \frac{1}{2}x+\frac{1}{8}\sin{4x} ]\\ = \frac{1}{2}+\frac{1}{2} \cos{4x} = \frac{1+\cos{4x}}{2}\\ = \cos^2{2x}
15. ∫1x3+1dx\int \frac{1}{x^3+1}dx
x3+1=(x+1)(x2−x+1)=x3−x2+x+x2−x+1x^3+1 = (x+1)(x^2-x+1)= x^3-x^2+x+x^2-x+1
ax+bx2−x+1+cx+1,a+c=0,b+a−c=0,b+c=1\frac{ax+b}{x^2-x+1}+\frac{c}{x+1}, a+c=0, b+a-c=0, b+c=1
c=−a,b+2a=0,b=−2a,−2a+−a=1c=-a, b+2a=0, b=-2a, -2a+-a=1
a=−13,c=13,b=23a=-\frac{1}{3}, c=\frac{1}{3}, b=\frac{2}{3}
∫1x3+1dx=∫1(x+1)(x2−x+1)dx=∫−13x+23x2−x+1dx+∫13x+1dx=−13∫x−2x2−x+1dx+13ln∣x+1∣+C \begin{aligned} &\int \frac{1}{x^3+1}dx\\ &=\int \frac{1}{(x+1)(x^2-x+1)}dx\\ &=\int \frac{-\frac{1}{3}x+\frac{2}{3}}{x^2-x+1}dx+\int \frac{\frac{1}{3}}{x+1}dx\\ &=-\frac{1}{3}\int \frac{x-2}{x^2-x+1}dx+\frac{1}{3}\ln|x+1|+C\\ \end{aligned}
∫x−2x2−x+1dx=∫x−2(x−12)2+34dx(u=x−12)=∫u−32u2+34du=∫uu2+34du−32∫1u2+34du \int \frac{x-2}{x^2-x+1}dx\\ =\int \frac{x-2}{(x-\frac{1}{2})^2+\frac{3}{4}}dx \\ (u=x-\frac{1}{2}) \\ =\int \frac{u-\frac{3}{2} }{u^2+\frac{3}{4}} du \\ =\int \frac{u}{u^2+\frac{3}{4}}du-\frac{3}{2}\int\frac{1}{u^2+\frac{3}{4}}du \\
Tip. 원래는 이렇게 하는 것이 더 낫다. 분모의 미분형태(2x-1)를 분자에서 파생.
∫x−2x2−x+1dx=12∫(2x−1)−3x2−x+1dx=12∫2x−1x2−x+1dx−32∫1(x−12)2+34dx \int \frac{x-2}{x^2-x+1}dx\\ =\frac{1}{2}\int \frac{(2x-1)-3}{x^2-x+1} dx\\ =\frac{1}{2}\int \frac{2x-1}{x^2-x+1} dx-\frac{3}{2}\int \frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}} dx\\
A.∫uu2+34du(t=u2+34,dt=2udu)=12∫1tdt=12ln∣t∣=12ln∣x2−x+1∣B.∫1u2+34du=∫1u2+(32)2du=23arctan(23u)=23arctan(23(x−12)) ∴∫x−2x2−x+1dx=∫uu2+34du−32∫1u2+34du=12ln∣x2−x+1∣−3223arctan(23(x−12))=12ln∣x2−x+1∣−3arctan(2x−13) A. \int \frac{u}{u^2+\frac{3}{4}}du\\ (t=u^2+\frac{3}{4}, dt=2udu)\\ =\frac{1}{2}\int \frac{1}{t} dt=\frac{1}{2}\ln|t|=\frac{1}{2}\ln|x^2-x+1|\\ B.\int \frac{1}{u^2+\frac{3}{4}}du\\ = \int \frac{1}{u^2+(\frac{\sqrt{3}}{2})^2}du\\ = \frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}u)=\frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}(x-\frac{1}{2})) \\ \; \\ \therefore \int \frac{x-2}{x^2-x+1}dx = \int \frac{u}{u^2+\frac{3}{4}}du-\frac{3}{2}\int\frac{1}{u^2+\frac{3}{4}}du \\ = \frac{1}{2}\ln|x^2-x+1| -\frac{3}{2}\frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}(x-\frac{1}{2})) \\ = \frac{1}{2}\ln|x^2-x+1| -\sqrt{3} \arctan (\frac{2x-1}{\sqrt{3}})\\
∴∫1x3+1dx=−13∫x−2x2−x+1dx+13ln∣x+1∣+C=−16ln∣x2−x+1∣+33arctan(2x−13)+13ln∣x+1∣+C \begin{aligned} \therefore &\int \frac{1}{x^3+1}dx\\ &=-\frac{1}{3}\int \frac{x-2}{x^2-x+1}dx+\frac{1}{3}\ln|x+1|+C\\ &= -\frac{1}{6}\ln|x^2-x+1| +\frac{\sqrt{3}}{3} \arctan (\frac{2x-1}{\sqrt{3}})+\frac{1}{3}\ln|x+1|+C\\ \end{aligned}
16. ∫xsin2xdx\int x\sin^2{x} dx
∫xsin2xdx=∫x1−cos2x2dx=12∫xdx−12∫xcos2xdx \begin{aligned} &\int x\sin^2{x} dx\\ &=\int x\frac{1-\cos{2x}}{2}dx\\ &=\frac{1}{2}\int xdx -\frac{1}{2}\int x\cos{2x}dx \end{aligned}
∫xcos2xdx=x(12sin2x)−12∫sin2xdx=xsin2x2−1212(−cos2x)=xsin2x2+cos2x4 \int x\cos{2x}dx=x(\frac{1}{2}\sin{2x})-\frac{1}{2}\int \sin{2x}dx\\ =\frac{x\sin{2x}}{2} -\frac{1}{2} \frac{1}{2}(-\cos{2x})\\ =\frac{x\sin{2x}}{2}+\frac{\cos{2x}}{4} \\
=12∫xdx−12∫xcos2xdx=14x2−xsin2x4−cos2x8+C=x2−xsin2x4−cos2x8+C=2x2−2xsin2x−cos2x8+C \begin{aligned} &=\frac{1}{2}\int xdx -\frac{1}{2}\int x\cos{2x}dx\\ &=\frac{1}{4}x^2 -\frac{x\sin{2x}}{4}-\frac{\cos{2x}}{8}+C\\ &=\frac{x^2-x\sin{2x}}{4} -\frac{\cos{2x}}{8}+C\\ &=\frac{2x^2-2x\sin{2x}-\cos{2x}}{8} +C\\ \end{aligned}
17. ∫(x+1x)2dx\int (x+\frac{1}{x})^2 dx
∫(x+1x)2dx=∫x2+2+1x2dx=13x3+2x−1x+C \begin{aligned} &\int (x+\frac{1}{x})^2 dx\\ &=\int x^2+2+\frac{1}{x^2}dx \\ &=\frac{1}{3}x^3+2x -\frac{1}{x}+C \end{aligned}
18 ∫3x2+4x+29dx\int \frac{3}{x^2+4x+29} dx
∫3x2+4x+29dx=3∫1(x+2)2+52dx=35arctanx+25+C \begin{aligned} &\int \frac{3}{x^2+4x+29} dx\\ &=3\int \frac{1}{ (x+2)^2+5^2} dx\\ &=\frac{3}{5}\arctan{\frac{x+2}{5}} +C \\ \end{aligned}
19 ∫cot5(x)dx\int cot^5(x)dx
∫cot5xdx=∫cos5xsin5xdx=∫cos4xcosxsin4xsinxdx=∫(cos2x)2cosx(sin2x)2sinxdx=∫(1−sin2x)2cosx(sin2x)2sinxdx=∫(1−2sin2x+sin4x)cosx(sin2x)2sinxdx=∫cosxsin5xdx−2∫cosxsin3xdx+∫cosxsinxdx(u=sinx,du=cosxdx)=∫u−5du−2∫u−3du+∫1udx=−14u4+1u2+ln∣u∣+C=−14sin4x+1sin2x+ln∣sinx∣+C=−14csc4x+csc2x+ln∣sinx∣+C \begin{aligned} &\int \cot^5{x} dx\\ &=\int \frac{cos^5{x}}{ sin^5{x}} dx\\ &=\int \frac{cos^4{x}\cos{x}}{ sin^4{x}\sin{x}} dx\\ &=\int \frac{(cos^2{x})^2\cos{x}}{ (sin^2{x})^2\sin{x}} dx\\ &=\int \frac{(1-sin^2{x})^2\cos{x}}{(sin^2{x})^2\sin{x}} dx\\ &=\int \frac{(1-2sin^2{x}+sin^4{x})\cos{x}}{(sin^2{x})^2\sin{x}} dx\\ &=\int \frac{cos x}{sin^5x} dx -2\int \frac{cos x}{sin^3x}dx + \int \frac{cos x}{sin x}dx\\ &(u=sin x, du=cos x dx)\\ &=\int u^{-5}du-2\int u^{-3}du +\int \frac{1}{u} dx\\ &=-\frac{1}{4u^4}+\frac{1}{u^2}+ln|u|+C\\ &=-\frac{1}{4sin^4x}+\frac{1}{sin^2x}+ln|sin x|+C\\ &=-\frac{1}{4}csc^4x+\csc^2{x}+ln|sin x|+C\\ \end{aligned}
20. ∫−11tanxx4+x2+1dx\int_{-1}^{1} \frac{tan x}{x^4+x^2+1} dx
∫−11tanxx4+x2+1dx=0(oddfunction;x−>even.sin/cos−>odd) \begin{aligned} &\int_{-1}^{1} \frac{tan x}{x^4+x^2+1} dx\\ &=0 \\ &(odd function; x -> even. sin/cos -> odd) \end{aligned}
Author: crazyj7@gmail.com
'Math' 카테고리의 다른 글
Integral100 [31-40] (0) | 2019.10.16 |
---|---|
Integral100 [21-30] (1) | 2019.10.15 |
Integral100 [1-10] (2) | 2019.10.12 |
integral ln gamma (0) | 2019.08.01 |
integral ln sin (0) | 2019.08.01 |