적분에 대하여... 넓이,부피,겉넓이
적분은 적(쌓을 적.. 쌓는다..). 분(나눌 분.. 아주 작게 쪼갠다.) 積分
아주 작게 쪼개서 쌓는 것을 말한다.
왜 굳이 쪼개서 합칠까? 쪼개서 합치면 원래 대로 되는 것인데...
어디에 활용될 수 있을까?
이상하게 생긴 모양의 컵에 물이 담겨있다고 생각해 볼 때, 물의 부피를 알고 싶을 것이다.
그렇다면 물을 비커에 따라 보면 눈금을 읽어보면 바로 부피가 나온다.
이것도 적분으로 볼 수 있을 것이다. 물을 쪼개서 다시 새로운 용기에 담았으니 물의 부피는 그대로이다.
의 그래프에서 x축과 x=a, x=b 구간으로 구성된 도형의 넓이를 구하고 싶을 때. 바로 이 적분을 쓰면 된다. 넓이를 계산하기 위해 y 방향으로 촘촘히 자른다고 생각해 보자. 이 때 아주 촘촘하게 자른다면 사각형 모양에 가깝고,
가로 길이는 0에 가깝지만 0은 아니고, 이를 dx라 한다.
이 작은 하나의 사각형의 넓이가 f(x) dx 이를 다 합치면 되는데...
넓이
넓이 S =
는 S자 같이 생겼고, Sum 즉, 합을 의미, dx라는 것은 x를 아주 작게 쪼갠 값(가로길이)이다.
f(x)는 y값. 즉 높이이다. f(x) dx 는 가로를 아주 작게 쪼갠 사각형의 넓이가 되고
이를 x가 a에서 b구간까지 변할 때의 S ; 즉 합을 구한다는 의미이다.
여기서 dx의 의미가 중요하다.
이렇게도 쓰는 델타 x.
x에 대해 적분한다는 것이다. x의 아주 작은 변화량.
회전체의 부피
그렇다면 위 그래프를 x축을 기준으로 회전했을 때 생기는 물체의 부피를 계산해보자.
회전체를 y축 방향으로 계속 자르면 모든 조각이 높이가 아주 작은 원기둥이 된다.
이 하나의 원기둥의 부피를 합치면 전체 회전체의 부피가 되는 것이다.
먼저 아주 작은 원기둥
에서 r은 이고 높이 h를 자세히 보면 를 의미하게 된다.
즉, 이를 x가 a에서 b까지 dx 로 적분하면 된다.
예를 들어
라는 직선을 x가 0에서 2r 범위에서 x축으로 회전하면 원뿔이 되는데,
우리가 아는 원뿔 부피 공식을 적용하면,
밑넓이는 원인데, 반지름이 x가 2r일때의 y값이다. x가 2r일때 y값은 r이다.
즉 반지름이 r인 원의 넓이가 밑넓이가 되고,
높이 h는 x가 0~2r 범위이니까, 2r이 된다.
그러면 이번엔 적분으로 풀어보자. 동일한 결과가 나오는지...
회전체의 옆면적
선을 적분하면 면이되고 면을 적분하면 부피가 된다. 차원이 올라가는 것이다. 미분은 반대로 차원이 내려간다.
옆면적을 생각해 보니, 선을 적분하면 된다. 이 선은 바로 위에서 아주 작게 쪼갠 원기둥의 둘레이니 원주이다. 그래서 원주를 적분하면 면적이 나오겠다.
그러나 틀렸다. 왜 그런 것인가......
dx가 문제다... 생각해 보면, dx는 x축 방향을 작게 쪼갠 값이다.
부피를 구할 때는 dx가 원기둥의 높이의 의미가 있었지만......
옆넓이를 계산할 때는 dx를 사용하면 안된다.... ???? 원기둥이 아닌 띠를 잘라폈을 때의 가로길이, 세로길이를 봐야 하는 것이다...... 여기서 이 사각형(거의 사각형)의 세로 길이는 원주인 2 pi f(x)이지만, 가로는 dx가 아니라 바로 dx동안 f(x)가 움직인 거리이다....
즉, dx를 곱하는게 아니고, 저 작게 자른 f(x) 이동 거리를 곱해야 한다.
곡선의 이동 거리 공식은 (다음에 증명하기로 하고)
이것을 합친것이 전체 곡선의 길이인데,
위 공식에서 우리가 원하는 것은 x 지점에서의 아주 작은 가로길이 을 dx 대신 사용해야 한다.
.
따라서 옆면적
결국 적분을 자세히 보면 dx로 적분된 것의 의미를 다시 한 번 관찰해보니,
dx는 x를 0에 가깝게 아주 작게 쪼갰을 때의 값. 즉 극한 0값이 dx인데.
우리가 어떤 넓이든 부피를 구할 때 구하고자 할때 이 dx만큼 y방향으로 자른 조각들의 합으로 볼 수 있다.
이 아주 작은 조각의 넓이 또는 부피값의 합 (위 공식에서는 옆면적)
(작은조각).
즉 작은 조각들의 범위가 x가 a~b까지이고, 이 조각들을 합친다.
작은 조각의 크기는 공식에서 위 기호를 뺀 나머지다.
이렇게 생각하고 보니, 적분은 작은조각(작은 길이나 작은 넓이)과 합(integral, sum) 기호로 구성된 것.
작은 조각은 dx의 몇 배 형태로 나타낸 것.
'Math' 카테고리의 다른 글
최소제곱법 (0) | 2019.03.26 |
---|---|
[선형대수] 프로젝션, 최소제곱법 (0) | 2019.03.26 |
[미분] 미분 (0) | 2017.05.08 |
[적분] 곡선의 길이 계산2 (0) | 2017.05.08 |
[적분] 곡선의 길이 계산 (0) | 2016.09.06 |