61. ∫sqrt(x2+4x)dx
∫x2+4xdx=∫x2+4x+4−4dx=∫(x+2)2−4dx(x+2=2secθ,dx=2secθtanθdθ)=∫(4sec2θ−4)2secθtanθdθ=∫4secθtan2θdθ=4∫secθ(sec2θ−1)dθ=4∫sec3θdθ−4∫secθdθ
∫sec3xdx=∫secxsec2xdx=secxtanx−∫secxtan2xdx=secxtanx−∫secx(sec2x−1)dx=secxtanx−∫sec3xdx+∫secxdx2∫sec3xdx=secxtanx+ln∣secx+tanx∣∫sec3xdx=21(secxtanx+ln∣secx+tanx∣)+C
=4∫sec3θdθ−4∫secθdθ=2(secθtanθ+ln∣secθ+tanθ∣)−4ln∣secθ+tanθ∣=2secθtanθ−2ln∣secθ+tanθ∣+C(secθ=2x+2,R.T.angle=θ,a=2,h=x+2,o=x2+4x)=22x+22x2+4−2ln∣2x+2+x2+4∣+C=2(x+2)x2+4−2ln∣2x+2+x2+4∣+C=2(x+2)x2+4−2ln∣x+2+x2+4∣+C2
62. ∫(x2)ex3dx
∫(x2)ex3dx(u=x3,du=3x2dx)=∫(x2)eu3x21du=eu=31ex3+C
63. ∫(x3)ex2dx
∫(x3)ex2dx(u=x2,du=2xdx)=21∫(x2)eudu=21∫ueudu=21(ueu−eu)=21(x2−1)ex2+C
64. ∫tan(x)ln(cos(x))dx
∫tan(x)ln(cos(x))dx=∫cos(x)sin(x)ln(cos(x))dx(u=cos(x),du=−sin(x)dx)=−∫ln(u)u1du=−(ln(u)ln(u)−∫uln(u)du)[2∫uln(u)du=(ln(u))2]=−21(ln(cosx))2+C
Alt.
(u=ln(cos(x),du=−cosxsinxdx=−tanxdx)∫tan(x)ln(cos(x))dx=−∫udu=−21(ln(cosx))2+C
65. ∫1/(x3−4x2)dx
∫(x3−4x2)1dx=∫x2(x−4)1dx(x2ax+b+x−4c=x2(x−4)(c+a)x2+(b−4a)x−4b)(b=−41,a=b/4=−161,c=−a=161)=∫x2−161x−41dx+∫x−4161dx=−161(∫x2x+4dx−∫x−41dx)=−161(∫x1dx+4∫x−2dx−ln∣x−4∣)=−161(ln∣x∣−x4−ln∣x−4∣)+C
66. ∫sin(x)cos(2x)dx
∫sin(x)cos(2x)dx=∫sin(x)(2cos2(x)−1)dx=2∫sin(x)cos2(x)dx−∫sin(x)dx(u=cos(x),du=−sin(x)dx)=−2∫u2du+cos(x)=−32u3+cos(x)+C=−32cos3(x)+cos(x)+C
67. ∫2ln(x)dx
∫2ln(x)dx(y=2ln(x),log2y=ln2lny=ln(x))(yln21dy=x1dx,dxdy=xyln2)=∫yyln2xdy=ln21∫xdy=ln21∫elog2ydy=ln21∫ylog2edy=ln21∫yln21dy(ln21+1=ln21+ln2)=ln21(1+ln2)ln2y(ln21+1)=(1+ln2)1yy1/ln2=(1+ln2)12lnx2(lnx)(1/ln2)+C=(1+ln2)12lnxx(ln2)(1/ln2)+C=1+ln2x2lnx+C
Alt.
∫2ln(x)dx=∫xln(2)dx=1+ln21x(1+ln2)+C=1+ln2xxln2+C=1+ln2x2lnx+C
68. ∫sqrt(1+cos(2x))dx
∫1+cos(2x)dx=∫1+2cos2x−1dx=2∫cosxdx=2sinx+C
69. ∫1/(1+tan(x))x
∫1+tan(x)1dx=∫1−tan2(x)1−tan(x)dx=∫1−tan2(x)1+2tan(x)−3tan(x)dx=∫tan(2x)dx+∫1−tan2(x)1−3tan(x)dx=−21ln∣cos2x∣+∫cos2xcos2x−sin2xcosxcosx−3sinxdx=−21ln∣cos2x∣+∫cos2x−sin2xcos2x−3cosxsinxdx=∫cosx+sinxcosxdx(u=sinx,du=cosxdx)=∫1−u2+u1du=∫1+tan2(x)+2tan(x)1+tan(x)dx∫1+tan(x)dxtan(2x)=1−tan2(x)2tan(x)
first!..
∫1+tan(x)1−tan(x)dx=∫cos+sincos−sindx(u=cos+sin,du=−sin+cosdx)=∫u1du=ln∣u∣=ln∣cos(x)+sin(x)∣+C
∫1+tan(x)1dx=21∫1+tan(x)1−tan(x)+1+tan(x)dx=21∫1+tan(x)1−tan(x)dx+21x=21ln∣cos(x)+sin(x)∣+21x+C
70. ∫1/eesqrt(1−ln(x)2)/xdx
∫1/eex1−ln(x)2dx(u=ln(x),du=x1dx)=∫−111−u2du=2∫011−u2du=area half circle, radius 1=2π(u=sinθ,du=cosθdθ)=2∫0π/2cos2θdθ=∫0π/21+cos2θdθ=[θ+21sin2θ]0π/2=2π
Author: crazyj7@gmail.com