81. ∫x3sin(x1)dx
∫x3sin(x1)dx(u=x1,du=−x−2dx)=∫sin(u)x−3(−x2)du=−∫sin(u)x−1du=−∫usin(u)du=−(u(−cos(u))−(−sin(u)))=ucos(u)−sin(u)=x1cos(x1)−sin(x1)+C
82. ∫x4−1x−1dx
∫x4−1x−1dx=∫(x2+1)(x+1)(x−1)x−1dx=∫(x2+1)(x+1)1dx(x2+1)(x+1)1=x2+1ax+b+x+1cnumerator:1=(c+a)x2+(b+a)x+c+ba=−c,b=−a,c+b=1,c=(1/2),b=(1/2),a=(−1/2)=∫x2+1(−1/2)x+(1/2)dx+∫x+1(1/2)dx=−21∫x2+1xdx+21∫x2+11dx+21∫x+11dx(u=x2+1,du=2xdx)(∫x2+1xdx=21∫u1du=21ln∣u∣)=−41ln(x2+1)+21tan−1x+21ln∣x+1∣+C
83. ∫1+(x−4x1)2dx
∫1+(x−4x1)2dx(u=x−4x1,du=(1+4x21)dx,u=4x4x2−1)=∫1+u24x2+14x2du=∫1+u2(1−1+4x21)dunotsolve...∫x2+16x21+21=∫(x+4x1)2dx=∫x+4x1dx=21x2+41ln∣x∣+C
84. ∫1−sin(x)2etan(x)dx
∫1−sin(x)2etan(x)dx(u=tan(x),du=sec2(x)dx)∫eusec2xdx=∫eudu=eu=etan(x)+C
85. ∫x2arctan(x)dx
∫x2arctan(x)dxD(arctan(x))=1+x21,∫x−2dx=−x−1=arctan(x)(−x−1)−∫1+x21(−x−1)dx=arctan(x)(−x−1)+∫x(1+x2)1dx=−xarctan(x)+∫xc+x2+1ax+bdx(a+c)x2+bx+c=1,c=1,b=0,a=−1=−xarctan(x)+∫x1dx−∫x2+1xdx=−xarctan(x)+ln∣x∣−21ln(x2+1)+C=−xarctan(x)−21ln(x21+x2)+C
86. ∫1+x2arctan(x)dx
∫1+x2arctan(x)dx=arctan(x)arctan(x)−∫1+x21arctan(x)dx=2arctan2(x)+C=2(tan−1x)2+C
87. ∫ln(x)2dx
∫ln(x)2dx=ln(x)2(x)−∫2ln(x)(1/x)xdx=xln(x)2−2∫ln(x)dx=xln(x)2−2(xln∣x∣−x)=x(ln(x)2−2ln∣x∣+2)+C
88. ∫x2x2+4dx
∫x2x2+4dxu=x2+4,du=x2+4xdx=x2+4(−x1)−∫x2+4x(−x1)dx=−xx2+4+∫x2+41dx=−xx2+4+21arctan(2x)+C
??? same???
Alt. x=2tanθ
dx=2sec2θdθ,R.T.angle=θ,a=1,o=2x,h=1+4x2=∫4tan2θ2secθ2sec2θdθ=∫sec3θcsc2θcos2θdθ=∫cosθsin2θ1dθ=∫cosθsin2θcos2θ+sin2θdθ=∫cotθcscθdθ+∫secθdθ=−cscθ+ln∣secθ+tanθ∣=−1+4x2x2+ln∣1+4x2+2x∣=−xx2+4+ln∣21(x+4+x2)∣+C=−xx2+4+ln∣x+4+x2∣+C2
89. ∫xx+4dx
∫xx+4dxu=x+4,du=2u1dx=∫u2−4u2udu=2∫u2−4u2−4+4du=2(∫du+4∫u2−41du)=2u+8∫u−21/4+u+2−1/4du=2u+2ln∣u−2∣−2ln∣u+2∣=2x+4+2ln∣x+4+2x+4−2∣+C
Author: crazyj7@gmail.com