반응형
integral_br_71

71. 1/(cbrt(x)+1)dx\int 1/(cbrt(x)+1)dx

1x3+1dx(u=x3,du=13x23dx=13x23dx=13u2dx)=3u2u+1du=3u21+1u+1du=3(u1)(u+1)u+1du+31u+1du=3(12u2u)+3lnu+1=32u23u+3lnu+1+C=32x323x3+3lnx3+1+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x}+1}dx \\ &(u=\sqrt[3]{x}, du=\frac{1}{3\sqrt[3]{x^2}}dx=\frac{1}{3}x^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u+1}du=3\int \frac{u^2-1+1}{u+1}du\\ &=3\int \frac{(u-1)(u+1)}{u+1}du+3\int\frac{1}{u+1}du \\ &=3(\frac{1}{2}u^2-u)+3ln|u+1|\\ &=\frac{3}{2}u^2-3u+3ln|u+1|+C\\ &=\frac{3}{2}\sqrt[3]{x}^2-3\sqrt[3]{x}+3ln|\sqrt[3]{x}+1|+C\\ \end{aligned}
Alt.
(u=x3+1,x=(u1)3,dx=3(u1)2du)=1u3(u1)2du=3u22u+1udu=3u2+(1/u)du=3(12u22u+lnu)=32(x3+1)26(x3+1)+3lnx3+1+C (u=\sqrt[3]{x}+1, x=(u-1)^3, dx=3(u-1)^2du)\\ =\int \frac{1}{u} 3(u-1)^2du\\ =3\int \frac{u^2-2u+1}{u} du=3\int u-2+(1/u) du\\ =3(\frac{1}{2}u^2-2u+ln|u|)\\ =\frac{3}{2}(\sqrt[3]{x}+1)^2-6(\sqrt[3]{x}+1)+3ln|\sqrt[3]{x}+1|+C


72. 1cbrt(x+1)dx\int \frac{1}{cbrt(x + 1)}dx

1x+13dx(u=x+13,du=13(x+1)23dx=13(x+1)23dx=13u2dx)=3u2udu=3udu=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &(u=\sqrt[3]{x+1}, du=\frac{1}{3\sqrt[3]{(x+1)^2}}dx=\frac{1}{3}(x+1)^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u}du=3\int u du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}
Alt.
(u=x+1)
1x+13dx=u13du=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &=\int u^{-\frac{1}{3}}du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}


73. (sin(x)+cos(x))2dx\int (sin(x)+cos(x))^2 dx

(sin(x)+cos(x))2dx=1+2sin(x)cos(x)dx=x+sin(2x)dx=x12cos(2x)+C \begin{aligned} &\int (sin(x)+cos(x))^2dx \\ &=\int 1+2sin(x)cos(x)dx=x+\int sin(2x) dx\\ &=x-\frac{1}{2}cos(2x)+C \end{aligned}


74. 2xln(1+x)dx\int 2xln(1+x) dx

2xln(1+x)dx=2xln(1+x)dx(ln쪽을 미분하는 방향으로 부분적분)=2(ln(1+x)12x211+x12x2dx)=ln(1+x)x2x21+xdx=ln(1+x)x2x21+11+xdx=ln(1+x)x2x1+11+xdx=ln(1+x)x212x2+xln(1+x)+C \begin{aligned} &\int 2xln(1+x) dx =2\int xln(1+x) dx\\ & \text{(ln쪽을 미분하는 방향으로 부분적분)}\\ &=2( ln(1+x)\frac{1}{2}x^2-\int \frac{1}{1+x}\frac{1}{2}x^2dx )\\ &= ln(1+x)x^2-\int \frac{x^2}{1+x}dx = ln(1+x)x^2-\int \frac{x^2-1+1}{1+x}dx\\ &= ln(1+x)x^2-\int x-1+\frac{1}{1+x}dx\\ &= ln(1+x)x^2-\frac{1}{2}x^2+x-ln(1+x)+C\\ \end{aligned}


75. 1/(x(1+sin2ln(x)))dx\int 1/(x(1+sin^2ln(x)))dx

1x(1+sin2ln(x))dx(u=ln(x),du=1xdx:1/xln(x).)=du1+sin2u:(sin,(),cos.sec,tan.)=sec2usec2u+tan2udu=sec2u1+2tan2udu,(t=tanu,dt=sec2udu)=dt1+2t2,(t=tanu,dt=sec2udu)=12arctan2t=12arctan(2tan(ln(x)))+C \begin{aligned} &\int \frac{1}{x(1+sin^2ln(x))} dx \\ &( u=ln(x), du=\frac{1}{x}dx : 1/x과 ln(x)에서 치환 착안.)\\ &=\int \frac{du}{1+sin^2u} : (sin에 대해 치환, 변환(반각)해보고, cos으로 나눠도 본다.\\ & sec, tan을 만들 수 있다는 것을 착안.)\\ &=\int \frac{sec^2u}{sec^2u+tan^2u}du\\ &=\int \frac{sec^2u}{1+2tan^2u}du, (t=tanu, dt=sec^2udu)\\ &=\int \frac{dt}{1+2t^2}, (t=tanu, dt=sec^2udu)\\ &=\frac{1}{\sqrt{2}}arctan {\sqrt{2}t}=\frac{1}{\sqrt{2}}arctan({\sqrt{2} tan(ln(x))})+C \end{aligned}


76. sqrt((1x)/(1+x))dx\int sqrt((1-x)/(1+x))dx

Try
1x1+xdx(전체치환? 일부치환. 분자분모곱, pm 등)(u=1x1+x,du=121+x1x1x+1+x12x+x2dx)(du=121+x1x2(1x)2dx=1u(1x)2dx)(u2=1x1+x,xu2+x=1u2,x=1u21+u2)=u2(1x)2du=u2(11u21+u2)2du=u2(2u21+u2)2du=4u6(11+u2)2du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(\text{전체치환? 일부치환. 분자분모곱, pm 등})\\ &( u = \sqrt{\frac{1-x}{1+x}}, du=\frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{1-x+1+x}{1-2x+x^2}dx)\\ &( du = \frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{2}{(1-x)^2}dx=\frac{1}{u(1-x)^2}dx)\\ &(u^2=\frac{1-x}{1+x}, xu^2+x=1-u^2, x=\frac{1-u^2}{1+u^2} )\\ &=\int u^2(1-x)^2 du =\int u^2(1-\frac{1-u^2}{1+u^2})^2du\\ &=\int u^2(\frac{2u^2}{1+u^2})^2 du = \int 4u^6(\frac{1}{1+u^2})^2du\\ \end{aligned}
Try
1x1+xdx(u=1x1+x,du=1x(1x)1+2x+x2dx=2(1+x)2dx)(xu+u=1x,x(u+1)=1u,x=1u1+u)=12u(1+x2)du=12u(1+(12u+u21+2u+u2)2)du=12u(2+2u21+2u+u2)2du=2u(1+u2)2(1+u)4du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(u=\frac{1-x}{1+x}, du=\frac{-1-x-(1-x)}{1+2x+x^2}dx=\frac{-2}{(1+x)^2}dx)\\ &( xu+u=1-x, x(u+1)=1-u, x=\frac{1-u}{1+u})\\ &=-\frac{1}{2}\int \sqrt{u} (1+x^2) du = -\frac{1}{2}\int \sqrt{u} (1+(\frac{1-2u+u^2}{1+2u+u^2})^2) du \\ &=-\frac{1}{2}\int \sqrt{u} (\frac{2+2u^2}{1+2u+u^2})^2 du \\ &=-2\int\sqrt{u}\frac{(1+u^2)^2}{(1+u)^4}du \end{aligned}
Solve
1x1+xdx=(1x)(1x)(1+x)(1x)dx=(1x)21x2dx=1x1x2dx=11x2dxx1x2dx(u=1x2,du=2xdx)=sin1x+121udu=sin1x+12u12du=sin1x+1x2+C \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx =\int \sqrt{\frac{(1-x)(1-x)}{(1+x)(1-x)}} dx\\ &=\int \sqrt{\frac{(1-x)^2}{1-x^2}} dx =\int \frac{1-x}{\sqrt{1-x^2}}dx\\ &=\int \frac{1}{\sqrt{1-x^2}}dx-\int \frac{x}{\sqrt{1-x^2}}dx\\ & (u=1-x^2, du=-2xdx)\\ &=\sin^{-1}x+\frac{1}{2}\int\frac{1}{\sqrt{u}}du=\sin^{-1}x+\frac{1}{2}\int u^{-\frac{1}{2}}du\\ &=\sin^{-1}x+\sqrt{1-x^2}+C \end{aligned}


77. xx/ln(x)dx\int x^{x/ln(x)}dx

Interesting…
xxln(x)dx((xln(x))=ln(x)1(ln(x))2)(y=xxln(x),ln(y)=xln(x)ln(x))(1yy=ln(x)1(ln(x))2ln(x)+xln(x)1x)(1yy=ln(x)1ln(x)+1ln(x)=1)y=y=xxln(x)+C \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx\\ &( (\frac{x}{ln(x)})'=\frac{ln(x)-1}{(ln(x))^2})\\ &(y=x^{\frac{x}{ln(x)}}, ln(y)=\frac{x}{ln(x)}ln(x))\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{(ln(x))^2}ln(x)+\frac{x}{ln(x)}\frac{1}{x})\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{ln(x)}+\frac{1}{ln(x)}=1)\\ &y'=y\\ &=x^{\frac{x}{ln(x)}}+C \end{aligned}
Alt.
xxln(x)dx=(elnx)xln(x)dx=exdx=ex+C(xxln(x)=ex) \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx = \int (e^{ln x})^{\frac{x}{ln(x)}}dx=\int e^x dx\\ &= e^x+C\\ &(x^{\frac{x}{ln(x)}}=e^x) \end{aligned}


78. arcsin(sqrt(x))dx\int arcsin(sqrt(x))dx

arcsin(x)dx( 루트부분을 치환. 부분적분)(u=x,u2=x,2udu=dx)=2usin1(u)du=(arcsin)=2(sin1u12u211u212u2du)=u2sin1uu21u2du=u2sin1u+1+1u21u2du=xsin1x11u2du+1u2du=xsin1xsin1x+1u2du \begin{aligned} &\int arcsin(\sqrt x) dx \\ &( \text{ 루트부분을 치환. 부분적분} )\\ &( u = \sqrt x, u^2=x, 2udu=dx)\\ &=2\int u sin^{-1}(u) du= (arcsin은 미분가능)\\ &=2( sin^{-1}u \frac{1}{2}u^2-\int \frac{1}{\sqrt{1-u^2}}\frac{1}{2}u^2 du )\\ &=u^2sin^{-1}u-\int \frac{u^2}{\sqrt{1-u^2}}du\\ &=u^2sin^{-1}u+\int \frac{-1+1-u^2}{\sqrt{1-u^2}}du\\ &=x\sin^{-1}\sqrt{x}-\int \frac{1}{\sqrt{1-u^2}}du+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ \end{aligned}

1u2du,(u=sinθ,du=cosθdθ)=cos2θdθ=121+cos2θdθ=12θ+12cos2θdθ=12θ+14sin2θ=12sin1u+12sinθcosθ=12sin1u+12u1u2 \int \sqrt{1-u^2}du, (u=sin\theta, du=cos\theta d\theta)\\ =\int cos^2\theta d\theta=\frac{1}{2}\int1+cos2\theta d\theta=\frac{1}{2}\theta+\frac{1}{2}\int cos 2\theta d\theta\\ =\frac{1}{2}\theta+\frac{1}{4} sin 2\theta =\frac{1}{2}sin^{-1}u+\frac{1}{2} sin \theta cos \theta\\ =\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}

arcsin(x)dx=xsin1xsin1x+1u2du=xsin1xsin1x+12sin1u+12u1u2=xsin1xsin1x+12sin1x+12x1x=(sin1x)(x12)+12x(1x)+C \begin{aligned} &\int arcsin(\sqrt x) dx \\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}\sqrt{x}+\frac{1}{2} \sqrt{x} \sqrt{1-x}\\ &=(\sin^{-1}x)(x-\frac{1}{2})+\frac{1}{2}\sqrt{x(1-x)}+C \end{aligned}


79. arctan(x)dx\int arctan(x) dx

arctan(x)dx(y=arctan(x),x=tan(y),dx=sec2ydy)=ysec2ydy()=ytan(y)tan(y)dy=xarctanx+lncosy+C=xarctanx+ln11+x2+C \begin{aligned} &\int arctan(x) dx \\ &(y=arctan(x), x=tan(y), dx=sec^2ydy)\\ &=\int y sec^2y dy (부분적분)\\ &=y \tan(y)-\int tan(y) dy=x\arctan{x}+ln|cos y|+C\\ &=x\arctan{x}+ln|\frac{1}{\sqrt{1+x^2}}|+C\\ \end{aligned}
Alt.
arctan(x)dx(we know11+x2dx=arctan(x))=arctan(x)xx1+x2dx(x2)=xarctanx12ln1+x2+C \begin{aligned} &\int arctan(x) dx \\ &(\text{we know} \int \frac{1}{1+x^2} dx=arctan(x))\\ &=arctan(x) x -\int \frac{x}{1+x^2} dx (x^2을 치환)\\ &=x \arctan{x}-\frac{1}{2}ln|1+x^2|+C \end{aligned}


80. 05f(x)dx\int_0^5 f(x) dx

if x<=2, f(x)=10
if x>=2, f(x)=3x223x^2-2
=02f(x)dx+25f(x)dx=0210dx+253x22dx=20+[x32x]25=20+(1154)=131 \begin{aligned} &=\int_0^2 f(x)dx+ \int_2^5 f(x) dx \\ &=\int_0^2 10 dx+ \int_2^5 3x^2-2 dx \\ &=20+\bigg[x^3-2x \bigg ]_2^5=20+(115-4)\\ &=131 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [61-70]  (0) 2019.10.23
Integral100 [51-60]  (1) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21

+ Recent posts