반응형
integral_br_91

91. x1+x4dx\int \frac{x}{1 + x^4} dx

x1+x4dxu=x2,du=2xdx=1211+u2du=12arctan(u)=12arctan(x2)+C \begin{aligned} &\int \frac{x}{1 + x^4} dx \\ &u=x^2, du=2xdx\\ &=\frac{1}{2}\int \frac{1}{1+u^2}du=\frac{1}{2}arctan(u)\\ &=\frac{1}{2}arctan(x^2)+C\\ \end{aligned}


92. exdx\int e^{\sqrt x} dx

exdxu=x,du=12xdxeu2udu=2ueudu=2(ueueu)=2ex(x1)+C \begin{aligned} &\int e^{\sqrt x} dx \\ & u=\sqrt x , du=\frac{1}{2\sqrt x} dx\\ &\int e^u 2udu=2\int ue^udu=2( ue^u-e^u )\\ &=2e^{\sqrt x}(\sqrt x -1 )+C \end{aligned}


93. 1csc(x)3dx\int \frac{1}{csc(x)^3} dx

1csc(x)3dx=sin3(x)dx=sin(x)(1cos2x)dx=sin(x)dxsin(x)cos2xdx(u=cos(x),du=sin(x)dx)=cos(x)+u2du=cos(x)+13u3+C=cos(x)+13cos3x+C \begin{aligned} &\int \frac{1}{csc(x)^3} dx \\ &=\int sin^3(x) dx=\int sin(x)(1-cos^2x)dx\\ &=\int sin(x)dx-\int sin(x)cos^2xdx\\ &(u=cos(x), du=-sin(x)dx)\\ &=-cos(x)+\int u^2du=-cos(x)+\frac{1}{3}u^3+C\\ &=-cos(x)+\frac{1}{3}cos^3x+C \end{aligned}


94. arcsinx1x2dx\int \frac{arcsin x}{\sqrt{1 - x^2}}dx

arcsinx1x2(11x2int>arcsin(x))u=arcsin(x),du=11x2dx=udu=12u2=(sin1x)22+C \begin{aligned} &\int \frac{arcsin x}{\sqrt{1 - x^2}} \\ &( \frac{1}{\sqrt{1-x^2}} -int-> arcsin(x) )\\ &u=arcsin(x), du=\frac{1}{\sqrt{1-x^2}}dx\\ &=\int u du = \frac{1}{2} u^2=\frac{(sin^{-1}x)^2}{2}+C \end{aligned}


95. 1+sin(2x)dx\int \sqrt{1 + sin(2x)} dx

1+sin(2x)dxu=sin(2x),du=2cos(2x)dx=1+u12cos(2x)du=121+u112sin2(x)du=12u112(u1)2du=12u12u2+4u1dunotwork \begin{aligned} &\int \sqrt{1 + sin(2x)} dx \\ &u=sin(2x) , du=2cos(2x)dx\\ &=\int \sqrt {1+u} \frac{1}{2cos(2x)}du =\frac 1 2 \int \sqrt {1+u} \frac {1}{1-2sin^2(x)}du \\ &=\frac 1 2 \int \sqrt u \frac{1}{1-2(u-1)^2}du =\frac 1 2 \int \sqrt u \frac{1}{-2u^2+4u-1}du \\ & not work \end{aligned}

1+sin(2x)dxu=1+sin(2x),du=2cos(2x)21+sin(2x)dxu21=sin(2x)=uucos(2x)du=u21(u21)2dut=u21,dt=2udu=12u1t2dt=121+t1t1+tdt=1211tdt=12(1t)1/2dt=12(2)(1t)1/2=1t=2u2=2(1+sin(2x))=1sin(2x)+C=cos2x+sin2x2sinxcos+C=cosxsinx+C \begin{aligned} &\int \sqrt{1 + sin(2x)} dx \\ &u=\sqrt{1 + sin(2x)}, du=\frac{2cos(2x)}{2\sqrt{1 + sin(2x)}}dx\\ &u^2-1=sin(2x)\\ &=\int u\frac{u}{cos(2x)} du = \int \frac{u^2}{\sqrt{1-(u^2-1)^2}}du\\ & t=u^2-1, dt=2udu\\ &=\frac{1}{2} \int \frac{u}{\sqrt{1-t^2}}dt=\frac{1}{2}\int \frac{\sqrt{1+t}}{\sqrt{1-t}\sqrt{1+t}}dt \\ &=\frac{1}{2}\int \frac{1}{\sqrt{1-t}}dt=\frac{1}{2}\int (1-t)^{-1/2}dt=\frac 1 2 (2)(1-t)^{1/2}\\ &=\sqrt{1-t}=\sqrt{2-u^2}=\sqrt{2-(1+sin(2x))}\\ &=\sqrt{1-sin(2x)}+C\\ &=\sqrt{cos^2x+sin^2x-2sinxcos}+C=|cosx-sinx|+C \end{aligned}
Alt.
1=sin2x+cos2x1+sin(2x)dx=sin2x+cos2x+2sinxcosxdx=(sinx+cosx)dx=cosx+sinx+C 1=sin^2x+cos^2x\\ \int \sqrt{1 + sin(2x)} dx =\int \sqrt {sin^2x+cos^2x+2sinxcosx} dx\\ =\int (sinx+cosx)dx=-cosx+sinx+C


96. x1/4dx\int x^{1/4} dx

x1/4dx=45x54+C \begin{aligned} &\int x^{1/4} dx \\ &=\frac 4 5 x^{\frac 5 4}+C \end{aligned}


97. 11+exdx\int \frac{1}{1 + e^x}dx

11+exdxu=1+ex,du=exdx=1u1u1du=1u+1u1du=lnu+lnu1=lnu1u=lnex1+ex+C=xln(1+ex)+C \begin{aligned} &\int \frac{1}{1 + e^x} dx \\ & u = 1+e^x, du=e^x dx \\ &=\int \frac {1}{u} \frac{1}{u-1}du=\int \frac{-1}{u}+\frac{1}{u-1}du \\ &=-ln|u|+ln|u-1|\\ &=ln|\frac{u-1}{u}|=ln|\frac{e^x}{1+e^x}|+C\\ &=x-ln(1+e^x)+C \end{aligned}


98. 1+exdx\int \sqrt{1 + e^x} dx

1+exdxu=1+ex,du=ex21+exdx=u2uexdu=2u21+1u21du=2(u11u2du)=2u2arctanh(u)+C=21+ex2tanh1(1+ex)+C=21+ex212ln1+1+ex11+ex+C=21+ex+ln11+ex1+1+ex+C \begin{aligned} &\int \sqrt{1 + e^x} dx \\ & u=\sqrt{1+e^x}, du=\frac{e^x}{2\sqrt{1+e^x}}dx\\ &=\int u \frac{2u}{e^x}du=2\int \frac {u^2-1+1}{u^2-1}du\\ &=2(u-\int \frac{1}{1-u^2} du)=2u-2arctanh(u)+C\\ &=2\sqrt{1+e^x}-2tanh^{-1}(\sqrt{1+e^x})+C\\ &=2\sqrt{1+e^x}-2\frac{1}{2}ln |{\frac{1+\sqrt{1+e^x}}{1-\sqrt{1+e^x}}}|+C\\ &=2\sqrt{1+e^x}+ln |{\frac{1-\sqrt{1+e^x}}{1+\sqrt{1+e^x}}}|+C\\ \end{aligned}
arctanhx=12ln1+x1xarctanh{x}=\frac{1}{2}\ln |\frac{1+x}{1-x}|


99. tan(x)sin(2x)dx\int \frac{\sqrt{tan(x)}}{sin(2x)}dx

tan(x)sin(2x)dx=tan(x)2sin(x)cos(x)dxu=tan(x),du=sec2x2tanxdx=u2sinxcosx2usec2xdu=2tan(x)cos(x)2sinxdu=du=u=tan(x)+C \begin{aligned} &\int \frac {\sqrt{tan(x)}}{sin(2x)}dx =\int \frac {\sqrt{tan(x)}}{2sin(x)cos(x)} dx\\ &u=\sqrt {tan(x)}, du=\frac{sec^2x}{2\sqrt{tanx}}dx \\ &=\int \frac {u}{2sinxcosx}\frac{2u}{sec^2x}du \\\\ &=\int \frac{2tan(x)cos(x)}{2sinx} du \\ &=\int du= u =\sqrt{tan(x)}+C \end{aligned}


100. 0π/211+sin(x)dx\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx

0π/211+sin(x)dxdiv cos=secxsecx+tanxdxu=secx+tanx,du=(secxtanx+sec2x)dx=secxu1secx(tanx+secx)du=1u2du=1u=1secx+tanx+C=cosx1+sinx+Ccosx1+sinx]0π/2=0(1)=1 \begin{aligned} &\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx \\ & \text{div cos} \\ &=\int \frac{secx}{secx+tanx}dx\\ & u=secx+tanx, du=(secxtanx+sec^2x )dx\\ &=\int \frac{secx}{u} \frac{1}{secx(tanx+secx)}du\\ &=\int \frac{1}{u^2}du = -\frac{1}{u}\\ &=-\frac{1}{secx+tanx}+C=-\frac{cosx}{1+sinx}+C \\ & -\frac{cosx}{1+sinx} ]_0^{\pi/2} =0-(-1)\\ &=1 \end{aligned}
Alt.
0π/211+sin(x)dx=0π/21sin(x)1sin2(x)dx=1sin(x)cos2(x)dx=sec2xsec(x)tan(x)dx=tan(x)sec(x)+C=tan(x)sec(x)]0π/2notsolve.=sin(x)1cos(x)=cos2(x)cos(x)(1+sin(x))=cos(x)1+sin(x) \begin{aligned} &\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx \\ &=\int_0^{\pi/2} \frac{1-sin(x)}{1 - sin^2(x)} dx =\int \frac{1-sin(x)}{cos^2(x)} dx\\ &=\int sec^2x-sec(x)tan(x)dx=tan(x)-sec(x)+C\\ &=tan(x)-sec(x) ]_0^{\pi/2} not solve. \\ &=\frac{sin(x)-1}{cos(x)}=-\frac{cos^2(x)}{cos(x)(1+sin(x))}=-\frac{cos(x)}{1+sin(x)} \end{aligned}


101. sin(x)x+ln(x)cos(x)dx\int \frac {sin(x)} x + ln(x)cos(x) dx

sin(x)x+ln(x)cos(x)dx=sinxxdx+ln(x)cos(x)dx=sin(x)ln(x)cos(x)ln(x)dx+ln(x)cos(x)dx=sin(x)ln(x)+C \begin{aligned} &\int \frac{sin(x)}{x} + ln(x)cos(x) dx \\ &=\int \frac{sinx}{x}dx+\int ln(x)cos(x)dx\\ &=sin(x)ln(x)- \int cos(x)ln(x)dx+\int ln(x)cos(x)dx\\ &=sin(x)ln(x)+C \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30
Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [71-80]  (0) 2019.10.24

+ Recent posts