91. ∫1+x4xdx
∫1+x4xdxu=x2,du=2xdx=21∫1+u21du=21arctan(u)=21arctan(x2)+C
92. ∫exdx
∫exdxu=x,du=2x1dx∫eu2udu=2∫ueudu=2(ueu−eu)=2ex(x−1)+C
93. ∫csc(x)31dx
∫csc(x)31dx=∫sin3(x)dx=∫sin(x)(1−cos2x)dx=∫sin(x)dx−∫sin(x)cos2xdx(u=cos(x),du=−sin(x)dx)=−cos(x)+∫u2du=−cos(x)+31u3+C=−cos(x)+31cos3x+C
94. ∫1−x2arcsinxdx
∫1−x2arcsinx(1−x21−int−>arcsin(x))u=arcsin(x),du=1−x21dx=∫udu=21u2=2(sin−1x)2+C
95. ∫1+sin(2x)dx
∫1+sin(2x)dxu=sin(2x),du=2cos(2x)dx=∫1+u2cos(2x)1du=21∫1+u1−2sin2(x)1du=21∫u1−2(u−1)21du=21∫u−2u2+4u−11dunotwork
∫1+sin(2x)dxu=1+sin(2x),du=21+sin(2x)2cos(2x)dxu2−1=sin(2x)=∫ucos(2x)udu=∫1−(u2−1)2u2dut=u2−1,dt=2udu=21∫1−t2udt=21∫1−t1+t1+tdt=21∫1−t1dt=21∫(1−t)−1/2dt=21(2)(1−t)1/2=1−t=2−u2=2−(1+sin(2x))=1−sin(2x)+C=cos2x+sin2x−2sinxcos+C=∣cosx−sinx∣+C
Alt.
1=sin2x+cos2x∫1+sin(2x)dx=∫sin2x+cos2x+2sinxcosxdx=∫(sinx+cosx)dx=−cosx+sinx+C
96. ∫x1/4dx
∫x1/4dx=54x45+C
97. ∫1+ex1dx
∫1+ex1dxu=1+ex,du=exdx=∫u1u−11du=∫u−1+u−11du=−ln∣u∣+ln∣u−1∣=ln∣uu−1∣=ln∣1+exex∣+C=x−ln(1+ex)+C
98. ∫1+exdx
∫1+exdxu=1+ex,du=21+exexdx=∫uex2udu=2∫u2−1u2−1+1du=2(u−∫1−u21du)=2u−2arctanh(u)+C=21+ex−2tanh−1(1+ex)+C=21+ex−221ln∣1−1+ex1+1+ex∣+C=21+ex+ln∣1+1+ex1−1+ex∣+C
arctanhx=21ln∣1−x1+x∣
99. ∫sin(2x)tan(x)dx
∫sin(2x)tan(x)dx=∫2sin(x)cos(x)tan(x)dxu=tan(x),du=2tanxsec2xdx=∫2sinxcosxusec2x2udu=∫2sinx2tan(x)cos(x)du=∫du=u=tan(x)+C
100. ∫0π/21+sin(x)1dx
∫0π/21+sin(x)1dxdiv cos=∫secx+tanxsecxdxu=secx+tanx,du=(secxtanx+sec2x)dx=∫usecxsecx(tanx+secx)1du=∫u21du=−u1=−secx+tanx1+C=−1+sinxcosx+C−1+sinxcosx]0π/2=0−(−1)=1
Alt.
∫0π/21+sin(x)1dx=∫0π/21−sin2(x)1−sin(x)dx=∫cos2(x)1−sin(x)dx=∫sec2x−sec(x)tan(x)dx=tan(x)−sec(x)+C=tan(x)−sec(x)]0π/2notsolve.=cos(x)sin(x)−1=−cos(x)(1+sin(x))cos2(x)=−1+sin(x)cos(x)
101. ∫xsin(x)+ln(x)cos(x)dx
∫xsin(x)+ln(x)cos(x)dx=∫xsinxdx+∫ln(x)cos(x)dx=sin(x)ln(x)−∫cos(x)ln(x)dx+∫ln(x)cos(x)dx=sin(x)ln(x)+C
Author: crazyj7@gmail.com