반응형
integral_br_90

90. 0π2sin(x)3cos(x)3+sin(x)3dx\int_{0}^{\frac{\pi}{2}} \frac{sin(x)^3}{cos(x)^3 + sin(x)^3} dx

try some.
0π2sin(x)3cos(x)3+sin(x)3dxcos3x+sin3x=(cos2x+sin2x)(cosx+sinx)cosxsin2xcos2xsinx=cosx+sinxcosxsin2xcos2sinx=cosx(1sin2x)+sinx(1cos2x)u=cos(x),du=sin(x)dx=sinx(1u2)u3+sinx(1u2)(1sinx)duu=cos3x+sin3x,du/dx=3cos2x(sinx)+3sin2xcosx=sinx(1cos2x)cos3x+sin3xdx=1cot3x+1dx \begin{aligned} &\int_0^{\frac{\pi}{2}} \frac{sin(x)^3}{cos(x)^3 + sin(x)^3} dx\\ &cos^3x+sin^3x=(cos^2x+sin^2x)(cosx+sinx)-cosxsin^2x-cos^2xsinx\\ &=cosx+sinx-cosxsin^2x-cos^2sinx\\ &=cosx(1-sin^2x)+sinx(1-cos^2x) \\ & u = cos(x), du=-sin(x)dx\\ &=\int \frac{sinx(1-u^2)}{u^3+sinx(1-u^2)} (-\frac{1}{sinx})du\\ & u=cos^3x+sin^3x, du/dx=3cos^2x(-sinx)+3sin^2xcosx \\ &=\int \frac{sinx(1-cos^2x)}{cos^3x+sin^3x}dx \\ &=\int \frac{1}{cot^3x+1}dx \end{aligned}
sin3xcos3x+sin3xdx(cosx+sinx)3=cos3x+sin3x+3cos2xsinx+3cosxsin2x=cos3x+sin3x+3cosxsinx(cosx+sinx)=1cot3x+1dx=1(1+cot2)(cotx)cotx+1dx=1csc2xcotxcotx+1dx=tan3x1+tan3xdx(u=tanx,du=sec2xdx)=u31+u31sec2xdx \int \frac{sin^3x}{cos^3x+sin^3x} dx\\ (cosx+sinx)^3 = cos^3x+sin^3x+3cos^2xsinx+3cosxsin^2x\\ =cos^3x+sin^3x+3cosxsinx(cosx+sinx)\\ =\int \frac{1}{cot^3x+1}dx=\int \frac{1}{(1+cot^2)(cotx)-cotx+1}dx\\ =\int \frac{1}{csc^2xcotx-cotx+1}dx\\ =\int \frac{tan^3x}{1+tan^3x}dx (u=tan x, du=sec^2x dx)\\ =\int \frac{u^3}{1+u^3}\frac{1}{sec^2x}dx

fail… very hard…

Hint: tan x, x=arctan subs... sin3xcos3x+sin3xdx=tan3x1+tan3xdx,(x=tan1y,dx=11+y2dy)=y31+y311+y2dy=y3+11(1+y2)(1+y3)dy=1(1+y2)1(1+y2)(1+y3)dy=arctan(y)ay+b1+y2+cy2+dy+e1+y3dya+c=0,b+d=0,c+e=0,d+a=0,b+e=1=a=c,b=d,c=e,dc=0,c+c=1,c=d=b=a,c=d=(1/2),a=b=e=(1/2)(1/2)y+(1/2)1+y2+(1/2)y2+(1/2)y+(1/2)1+y3=arctan(y)(1/2)y+(1/2)1+y2+(1/2)y2+(1/2)y+(1/2)1+y3dy=arctan(y)121+y1+y2dy+12y2+y11+y3dy1+y1+y2dy=11+y2dy+y1+y2dy=arctan(y)+12ln1+y2R=y2+y11+y3=y21+y3dy+y11+y3dyy21+y3dy=13ln(1+y3)y3+1=(y+1)(y2y+1)y11+y3dy=ay+by2y+1+cy+1dya+c=0,bc+a=0,b+c=1,a=c,b=2cc=1/3,b=2/3,a=1/3y11+y3dy=(1/3)y+2/3y2y+1+1/3y+1dy=13y2y2y+1dy+131y+1dy=23y1232y2y+1dy+13lny+1y1232y2y+1dy=y12y2y+1dy321y2y+1dy=12ln(y2y+1)321y2y+1dy1y2y+1dy=1tan2x+1tanxsec2xdx=sec2xsec2xtanxdx=1cos2x1cosxsinxcos2xdx=11cosxsinxdx=22sin2xdx1y2y+1=c(ay+b)1+(ay+b)2=aca2y2+2aby+b2+1a/c=1,2b/c=1,(b2+1)/ac=1,a=c=2b(b2+1)=(4b2),3b2=1,b=±13b=13,a=c=231y2y+1=23231+(23y13)21y2y+1dy=23231+(23y13)2dy=23arctan(23y13)R=y2+y11+y3dy=13ln(1+y3)23(12ln(y2y+1)3arctan(23y13))+13ln(y+1)R=23ln(y+1)+23arctan(2y13)Q=arctan(y)121+y1+y2dy+12y2+y11+y3dy=arctan(y)12(arctan(y)+12ln1+y2)+12(y2+y11+y3dy)=12x14ln1+tan2x+12R=12x14ln1+tan2x+13ln1+tanx+13arctan(2tanx13) \begin{aligned} &\text{Hint: tan x, x=arctan subs... }\\ &\int \frac{sin^3x}{cos^3x+sin^3x} dx \\ &=\int \frac{tan^3x}{1+tan^3x}dx, \quad (x=tan^{-1}y, dx=\frac{1}{1+y^2}dy)\\ &=\int \frac{y^3}{1+y^3}\frac{1}{1+y^2}dy \\ &=\int \frac{y^3+1-1}{(1+y^2)(1+y^3)}dy \\ &=\int \frac{1}{(1+y^2)}-\int \frac{1}{(1+y^2)(1+y^3)}dy \\ &=arctan(y)-\int \frac{ay+b}{1+y^2}+\frac{cy^2+dy+e}{1+y^3} dy\\ & a+c=0, b+d=0, c+e=0, d+a=0, b+e=1\\ &=a=-c, b=-d, c=-e, d-c=0, -c+-c=1, c=d=-b=-a, \\ &c=d=-(1/2), a=b=e=(1/2)\\ &\frac{(1/2)y+(1/2)}{1+y^2}+\frac{-(1/2)y^2+(-1/2)y+(1/2)}{1+y^3}\\ &=arctan(y)-\int \frac{(1/2)y+(1/2)}{1+y^2}+\frac{-(1/2)y^2+(-1/2)y+(1/2)}{1+y^3} dy\\ &=arctan(y)-\frac 1 2\int \frac{1+y}{1+y^2}dy+\frac 1 2 \int \frac{y^2+y-1}{1+y^3} dy\\ &\int \frac{1+y}{1+y^2}dy =\int \frac 1 {1+y^2}dy+\int \frac y {1+y^2}dy\\ &=arctan (y)+\frac 1 2 ln|1+y^2|\\ &R=\int \frac{y^2+y-1}{1+y^3}=\int \frac {y^2}{1+y^3}dy+\int \frac {y-1}{1+y^3}dy\\ &\int \frac {y^2}{1+y^3}dy=\frac 1 3 ln(1+y^3)\\ &y^3+1=(y+1)(y^2-y+1)\\ &\int \frac {y-1}{1+y^3}dy=\int \frac{ay+b}{y^2-y+1}+\frac{c}{y+1}dy\\ &a+c=0, b-c+a=0, b+c=1, a=-c, b=2c\\ &c=1/3, b=2/3, a=-1/3\\ &\int \frac {y-1}{1+y^3}dy=\int \frac{(-1/3)y+2/3}{y^2-y+1}+\frac{1/3}{y+1}dy\\ &=-\frac 1 3 \int \frac{y-2}{y^2-y+1}dy+\frac 1 3 \int \frac{1}{y+1}dy\\ &=-\frac 2 3 \int \frac{y-\frac 1 2-\frac 3 2 }{y^2-y+1}dy+\frac 1 3 ln|y+1|\\ &\int \frac{y-\frac 1 2-\frac 3 2 }{y^2-y+1}dy=\int \frac{y-\frac 1 2}{y^2-y+1}dy-\frac 3 2 \int \frac{1}{y^2-y+1}dy \\ &=\frac 1 2 ln(y^2-y+1) -\frac 3 2 \int \frac{1}{y^2-y+1}dy \\ &\int \frac{1}{y^2-y+1}dy=\int \frac {1}{tan^2x+1-tanx}sec^2xdx\\ &=\int \frac {sec^2x}{sec^2x-tanx}dx=\int \frac {\frac 1 {cos^2x}}{\frac{1-cosxsinx}{cos^2x}}dx=\int \frac 1 {1-cosxsinx}dx\\ &=\int \frac{2}{2- sin2x}dx\\ &\frac{1}{y^2-y+1}=c\frac {(ay+b)'}{1+(ay+b)^2}=\frac{ac}{a^2y^2+2aby+b^2+1}\\ &a/c=1, 2b/c=-1, (b^2+1)/ac=1, a=c=-2b\\ &(b^2+1)=(4b^2), 3b^2=1, b=\pm \frac 1 {\sqrt{3}} \\ &b=-\frac 1 {\sqrt 3}, a=c=\frac 2 {\sqrt 3}\\ &\frac{1}{y^2-y+1}=\frac 2 {\sqrt 3}\frac{\frac 2 {\sqrt 3}}{1+(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})^2}\\ &\int \frac{1}{y^2-y+1}dy=\frac 2 {\sqrt 3}\int \frac{\frac 2 {\sqrt 3}}{1+(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})^2} dy\\ &=\frac 2 {\sqrt 3}arctan(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})\\ & R=\int \frac{y^2+y-1}{1+y^3} dy = \frac1 3 ln(1+y^3)-\frac 2 3 ( \frac 1 2 ln(y^2-y+1)-\sqrt 3 arctan(\frac 2 {\sqrt 3} y-\frac 1 {\sqrt 3}) ) +\frac 1 3 ln(y+1)\\ &R=\frac 2 3 ln (y+1)+\frac 2 {\sqrt 3} arctan( \frac{2y-1}{\sqrt 3})\\ & \therefore Q=arctan(y)-\frac 1 2\int \frac{1+y}{1+y^2}dy+\frac 1 2 \int \frac{y^2+y-1}{1+y^3} dy \\ &=arctan(y)-\frac 1 2 ( arctan (y)+\frac 1 2 ln|1+y^2|)\\ &+\frac 1 2 ( \int \frac{y^2+y-1}{1+y^3} dy )\\ &=\frac 1 2 x-\frac 1 4 ln|1+tan^2x|+\frac 1 2 R\\ &=\frac 1 2 x-\frac 1 4 ln|1+tan^2x|+\frac{1}{3}ln|1+tanx|+\frac 1 {\sqrt 3}arctan(\frac {2tanx-1}{\sqrt 3}) \end{aligned}\\
이렇게라도 해봤는데… 답이 안나옴…
답은 pi/4 라고 하니, 알아서 도전바람…
끈기 있게 다시 시도…

sin3xcos3x+sin3xdx=tan3x1+tan3xdx,(x=tan1y,dx=11+y2dy)=y31+y311+y2dy=y3(1+y2)(1+y3)dy=y3(1+y)(1+y2)(1y+y2)dyay+1+by+cy2+1+dy+ey2y+1=(a+b)y2+(b+c)y+(a+c)y3+y2+y+1+dy+ey2y+1y4(a+b+d)=0,y3(b+cab+e+d=1),y2(a+cbc+a+b+e+d)=0,y(ac+b+c+e+d)=0,a+c+e=0a+c+e=0,a+b+e+d=0,2a+e+d=0,a+c+d+e=1,a+b+d=0b+d=a,2a+e=0,e=2a,c=3a,d=4a,a3a4a+2a=1a=1/6,c=1/2,e=1/3,d=2/3,b=1/2Q=1/6y+1+(1/2)y+(1/2)y2+1+(2/3)y+(1/3)y2y+1dy=16ln(y+1)12y1y2+1dy+132y1y2y+1dy=16ln(y+1)12yy2+1dy+121y2+1dy+13ln(y2y+1)=16ln(y+1)14ln(y2+1)+12arctan(y)+13ln(y2y+1)x= 0 to pi/2 , y=0 to inf. y=tan(x)=12x+112(4ln(y2y+1)2ln(y+1)3ln(y2+1))=12x+112ln((y2y+1)4(y+1)2(y2+1)3)(x=0,thenQ=0)(x=π/2,thenQ=π/4,(limylnO(y8)O(y8)=ln1=0))Q=π4Q=12x+112ln((y2y+1)4(y+1)2(y2+1)3)=12x+112ln((1+tan2xtanx)4(1+tanx)2(1+tan2x)3)=12x+112ln((sec2xtanx)4(1+tanx)2(secx)6)=12x+16ln((sec2xtanx)2(1+tanx)(secx)3)=12x+13ln(1cosxsinxcos2x)16ln(cosx+sinxcos4x)=12x+13ln(1cosxsinx)23ln(cosx)16ln(cosx+sinx)+23ln(cosx)=12x+13ln(1cosxsinx)16ln(cosx+sinx)+C \begin{aligned} &\int \frac{sin^3x}{cos^3x+sin^3x} dx \\ &=\int \frac{tan^3x}{1+tan^3x}dx, \quad (x=tan^{-1}y, dx=\frac{1}{1+y^2}dy)\\ &=\int \frac{y^3}{1+y^3}\frac{1}{1+y^2}dy \\ &=\int \frac{y^3}{(1+y^2)(1+y^3)}dy =\int \frac{y^3}{(1+y)(1+y^2)(1-y+y^2)}dy\\ &\frac{a}{y+1}+\frac{by+c}{y^2+1}+\frac{dy+e}{y^2-y+1}=\frac{ (a+b)y^2+(b+c)y+(a+c) }{y^3+y^2+y+1}+\frac{dy+e}{y^2-y+1}\\ &y^4( a+b +d)=0, y^3(b+c-a-b+e+d=1), y^2(a+c-b-c+a+b+e+d)=0,\\ &y(-a-c+b+c+e+d)=0, a+c+e=0\\ &a+c+e=0, -a+b+e+d=0, 2a+e+d=0, -a+c+d+e=1, a+b+d=0\\ &b+d=-a, -2a+e=0, e=2a, c=-3a, d=-4a, -a-3a-4a+2a=1\\ &a=-1/6, c=1/2, e=-1/3, d=2/3, b=-1/2\\ &Q=\int \frac{-1/6}{y+1}+\frac{(-1/2)y+(1/2)}{y^2+1}+\frac{(2/3)y+(-1/3)}{y^2-y+1} dy\\ &=-\frac 1 6 ln(y+1)- \frac 1 2 \int \frac{y-1}{y^2+1}dy+\frac 1 3 \int \frac{2y-1}{y^2-y+1} dy\\ &=-\frac 1 6 ln(y+1)- \frac 1 2 \int \frac y {y^2+1}dy +\frac 1 2 \int \frac 1 {y^2+1}dy+\frac 1 3 ln(y^2-y+1) \\ &=-\frac 1 6 ln(y+1)-\frac 1 4 ln(y^2+1)+\frac 1 2 arctan(y)+\frac 1 3 ln(y^2-y+1) \\ &\text{x= 0 to pi/2 , y=0 to inf. y=tan(x)}\\ &=\frac 1 2 x +\frac 1 {12} ( 4ln(y^2-y+1)-2ln(y+1)-3ln(y^2+1) )\\ &=\frac 1 2 x +\frac 1 {12} ln ( \frac{ (y^2-y+1)^4}{(y+1)^2(y^2+1)^3} ) \\ & (x=0, then Q=0 ) \\ & (x=\pi/2, then Q= \pi/4 , ( \lim_{y\to\infty} ln \frac{O(y^8)}{O(y^8)}=ln1=0) )\\ & \therefore Q=\frac {\pi}{4}\\ &Q=\frac 1 2 x +\frac 1 {12} ln ( \frac{ (y^2-y+1)^4} {(y+1)^2(y^2+1)^3} )\\ &=\frac 1 2 x +\frac 1 {12} ln( \frac{(1+tan^2x-tanx)^4}{(1+tanx)^2(1+tan^2x)^3})\\ &=\frac 1 2 x +\frac 1 {12} ln( \frac{(sec^2x-tanx)^4}{(1+tanx)^2(secx)^6})\\ &=\frac 1 2 x +\frac 1 {6} ln( \frac{(sec^2x-tanx)^2}{(1+tanx)(secx)^3})\\ &=\frac 1 2 x +\frac 1 {3} ln(\frac{1-cosxsinx}{cos^2x})-\frac 1 6 ln(\frac{cosx+sinx}{cos^4x})\\ &=\frac 1 2 x + \frac 1 3 ln(1-cosxsinx)-\frac 2 3ln(cosx)-\frac 1 6 ln(cosx+sinx)+\frac 2 3 ln(cosx)\\ &=\frac 1 2 x +\frac 1 3 ln(1-cosxsinx)-\frac 1 6 ln(cosx+sinx)+C\\ \end{aligned}

https://math.stackexchange.com/questions/198083/int-frac-sin3x-sin3x-cos3x

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [71-80]  (0) 2019.10.24
Integral100 [61-70]  (0) 2019.10.23

+ Recent posts