61. dxd2x1−x2+2arcsinx
dxd2x1−x2+2arcsinx=21(1−x2+x21−x2−2x+1−x21)=21−x21−x2−x2+1=21−x22−2x2=1−x21−x2=1−x2
62. dxdsinx+cosxsinx−cosx
dxdsinx+cosxsinx−cosx=(1+2sinxcosx)(cosx+sinx)(sinx+cosx)−(sinx−cosx)(cosx−sinx)=(sinx+cosx)2(sinx+cosx)2+(sinx−cosx)2=1+2sinxcosx1+2sinxcosx+1−2sinxcosx=1+sin(2x)2
63. dxd4x2(2x3–5x2)
dxd4x2(2x3–5x2)=8x(2x3−5x2)+4x2(6x2−10x)=40x4−80x3=40x3(x−2)
64. dxd(x)(4−x2)
dxd(x)(4−x2)=2x4−x2+x(−2x)=2x4−x2−4x2=2x−5x2+4
65. dxd1−x1+x
dxd1−x1+x=dxd1−x1−x2=(1−x)221−x2−2x(1−x)+1−x2=(1−x)21−x2x2−x+1−x2=1−x2(1−x)21−x=1−x2(1−x)1
66. dxdsin(sinx)
dxdsin(sinx)=cos(sinx)cosx
67. dxd(1+e2x)/(1−e2x)
dxd1−e2x1+e2x=(1−e2x)2e2x2(1−e2x)−(1+e2x)(−2e2x)=(1−e2x)22e2x−2e4x+2e2x+2e4x=(1−e2x)24e2x
68. dxd[x/(1+lnx)]
dxd1+lnxx=(1+lnx)21+lnx−x(1/x)=(1+lnx)2lnx
69. dxdxx/lnx
dxdxx/lnxy=xx/lnx,lny=lnxxlnx=x,y1dy=dxdxdy=y=xx/lnx=elnxx/lnx=e(x/lnx)lnx=ex
70. dxdln[x2+1x2−1]
dxdln[x2+1x2−1]=x2−1x2+1x2+12x2−12xx2+1−x2−12x2+12x=x2−1(x2+1)x2−1x(x2+1)−xx2−1=(x2−1)(x2+1)x3+x−x3+x=(x2−1)(x2+1)2x
Alt.
ln[x2+1x2−1]=21ln(x2−1)−21ln(x2+1)
Author: crazyj7@gmail.com