반응형
derivative_br_61

61. ddxx1x22+arcsinx2\frac{d}{dx} \frac{x\sqrt{1-x^2}}{2} + \frac{arcsinx}{2}

ddxx1x22+arcsinx2=12(1x2+x2x21x2+11x2)=1x2x2+121x2=22x221x2=1x21x2=1x2 \begin{aligned} &\frac{d}{dx}\frac{x\sqrt{1-x^2}}{2} + \frac{arcsinx}{2}\\ &=\frac{1}{2}(\sqrt{1-x^2}+x\frac{-2x}{2\sqrt{1-x^2}} +\frac{1}{\sqrt{1-x^2}})\\ &=\frac{1-x^2-x^2+1}{2\sqrt{1-x^2}}=\frac{2-2x^2}{2\sqrt{1-x^2}}\\ &=\frac{1-x^2}{\sqrt{1-x^2}}=\sqrt{1-x^2} \end{aligned}


62. ddxsinxcosxsinx+cosx\frac{d}{dx} \frac{sinx-cosx}{sinx+cosx}

ddxsinxcosxsinx+cosx=(cosx+sinx)(sinx+cosx)(sinxcosx)(cosxsinx)(1+2sinxcosx)=(sinx+cosx)2+(sinxcosx)2(sinx+cosx)2=1+2sinxcosx+12sinxcosx1+2sinxcosx=21+sin(2x) \begin{aligned} &\frac{d}{dx} \frac{sinx-cosx}{sinx+cosx}\\ &=\frac{(cosx+sinx)(sinx+cosx)-(sinx-cosx)(cosx-sinx)}{(1+2sinxcosx)}\\ &=\frac{(sinx+cosx)^2+(sinx-cosx)^2}{(sinx+cosx)^2}\\ &=\frac{1+2sinxcosx+1-2sinxcosx}{1+2sinxcosx}\\ &=\frac{2}{1+sin(2x)} \end{aligned}


63. ddx4x2(2x35x2)\frac{d}{dx}4x^2(2x^3 – 5x^2)

ddx4x2(2x35x2)=8x(2x35x2)+4x2(6x210x)=40x480x3=40x3(x2) \begin{aligned} &\frac{d}{dx}4x^2(2x^3 – 5x^2)\\ &=8x(2x^3-5x^2)+4x^2(6x^2-10x)\\ &=40x^4-80x^3=40x^3(x-2) \end{aligned}


64. ddx(x)(4x2)\frac{d}{dx}(\sqrt x)(4-x^2)

ddx(x)(4x2)=4x22x+x(2x)=4x24x22x=5x2+42x \begin{aligned} &\frac{d}{dx}(\sqrt x )(4-x^2)\\ &=\frac{4-x^2}{2\sqrt x}+\sqrt x(-2x)=\frac{4-x^2-4x^2}{2\sqrt x}\\ &=\frac{-5x^2+4}{2\sqrt x} \end{aligned}


65. ddx1+x1x\frac{d}{dx} \sqrt{\frac{1+x}{1-x}}

ddx1+x1x=ddx1x21x=2x(1x)21x2+1x2(1x)2=x2x+1x21x2(1x)2=1x1x2(1x)2=11x2(1x) \begin{aligned} &\frac{d}{dx}\sqrt{\frac{1+x}{1-x}}=\frac d {dx} \frac{\sqrt{1-x^2}}{1-x}\\ &=\frac{\frac{-2x(1-x)}{2\sqrt{1-x^2}}+\sqrt{1-x^2}}{(1-x)^2}\\ &=\frac{\frac{x^2-x+1-x^2}{\sqrt{1-x^2}} }{(1-x)^2} =\frac{1-x}{\sqrt{1-x^2}(1-x)^2}\\ &=\frac{1}{\sqrt{1-x^2}(1-x)} \end{aligned}


66. ddxsin(sinx)\frac{d}{dx}sin(sinx)

ddxsin(sinx)=cos(sinx)cosx \begin{aligned} &\frac{d}{dx}sin(sinx)\\ &=cos(sinx)cosx \end{aligned}


67. ddx(1+e2x)/(1e2x)\frac{d}{dx}(1+e^{2x})/(1-e^{2x})

ddx1+e2x1e2x=e2x2(1e2x)(1+e2x)(2e2x)(1e2x)2=2e2x2e4x+2e2x+2e4x(1e2x)2=4e2x(1e2x)2 \begin{aligned} &\frac{d}{dx}\frac{1+e^{2x}}{1-e^{2x}}\\ &=\frac{e^{2x}2(1-e^{2x})-(1+e^{2x})(-2e^{2x})}{(1-e^{2x})^2}\\ &=\frac{2e^{2x}-2e^{4x}+2e^{2x}+2e^{4x}}{(1-e^{2x})^2}\\ &=\frac{4e^{2x}}{(1-e^{2x})^2} \end{aligned}


68. ddx[x/(1+lnx)]\frac{d}{dx}[x/(1+lnx)]

ddxx1+lnx=1+lnxx(1/x)(1+lnx)2=lnx(1+lnx)2 \begin{aligned} &\frac{d}{dx} \frac{x}{1+lnx} \\ &=\frac{1+lnx-x(1/x)}{(1+lnx)^2}=\frac{lnx}{(1+lnx)^2} \end{aligned}


69. ddxxx/lnx\frac{d}{dx}x^{x/lnx}

ddxxx/lnxy=xx/lnx,lny=xlnxlnx=x,1ydy=dxdydx=y=xx/lnx=elnxx/lnx=e(x/lnx)lnx=ex \begin{aligned} &\frac{d}{dx}x^{x/lnx}\\ &y=x^{x/lnx}, lny=\frac{x}{lnx}lnx=x,\frac{1}{y}dy=dx\\ &\frac{dy}{dx}=y=x^{x/lnx}\\ &=e^{{lnx}^{x/lnx}}=e^{(x/lnx)lnx}=e^x \end{aligned}


70. ddxln[x21x2+1]\frac{d}{dx}ln[\sqrt{\frac{x^2-1}{x^2+1}}]

ddxln[x21x2+1]=x2+1x212x2x21x2+1x212x2x2+1x2+1=x(x2+1)x21xx21x21(x2+1)=x3+xx3+x(x21)(x2+1)=2x(x21)(x2+1) \begin{aligned} &\frac{d}{dx}ln[\sqrt{\frac{x^2-1}{x^2+1}}]\\ &=\sqrt \frac{x^2+1}{x^2-1}\frac{\frac{2x}{2\sqrt{x^2-1}}\sqrt{x^2+1}-\sqrt{x^2-1}{\frac{2x}{2\sqrt{x^2+1}}}}{x^2+1}\\ &=\frac{ \frac{x(x^2+1)}{\sqrt{x^2-1}} -x\sqrt{x^2-1} }{\sqrt{x^2-1}(x^2+1)}\\ &=\frac{x^3+x-x^3+x}{(x^2-1)(x^2+1)}=\frac{2x}{(x^2-1)(x^2+1)} \end{aligned}
Alt.
ln[x21x2+1]=12ln(x21)12ln(x2+1) ln[\sqrt{\frac{x^2-1}{x^2+1}}]=\frac{1}{2}ln(x^2-1)-\frac{1}{2}ln(x^2+1)



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivatie100 [51-60]  (0) 2019.11.18
D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06

+ Recent posts