반응형
derivative_br_51

51. ddx10x\frac{d}{dx}10^x

ddx10x=10xln(10) \begin{aligned} &\frac{d}{dx}10^x\\ &=10^xln(10) \end{aligned}

y=ax,lny=xlna(1/y)dy=(lna)dxdy/dx=ylna=axlnaor10x=eln10x \begin{aligned} &y=a^x, lny=xlna \\ &(1/y)dy=(lna)dx \\ &dy/dx=ylna=a^xlna \\ or\\ &10^x=e^{ln10^x} \end{aligned}


52. ddxcubert(x+(lnx)2)\frac{d}{dx}cubert(x+(lnx)^2)

ddxx+(lnx)23=ddx(x+(lnx)2)1/3=13(x+(lnx)2)2/3(1+2ln(x)1x)=13(x+(lnx)2)2/3(1+2lnxx) \begin{aligned} &\frac{d}{dx}\sqrt[3]{x+(lnx)^2}\\ &=\frac{d}{dx}(x+(lnx)^2)^{1/3}=\frac{1}{3}(x+(lnx)^2)^{-2/3}(1+2ln(x)\frac{1}{x})\\ &=\frac{1}{3(x+(lnx)^2)^{2/3}}(1+\frac{2lnx}{x}) \end{aligned}


53. ddxx3/42x1/4\frac{d}{dx}x^{3/4} – 2x^{1/4}

ddxx3/42x1/4=34x1/412x3/4=3x3/44x2x1/44x=3x432x44x \begin{aligned} &\frac{d}{dx}x^{3/4} – 2x^{1/4}\\ &=\frac{3}{4}x^{-1/4}-\frac{1}{2}x^{-3/4}\\ &=\frac{3x^{3/4}}{4x}-\frac{2x^{1/4}}{4x}\\ &=\frac{3\sqrt[4]x^3-2\sqrt[4]x}{4x} \end{aligned}


54. ddxlog2(x1+x2)\frac{d}{dx}log_2 (x \sqrt{1+x^2})

ddxlog2(x1+x2)((d/dx)logax=1xlna)=1+x2+x2x21+x2x1+x2ln2=1+2x2x(1+x2)ln2 \begin{aligned} &\frac{d}{dx}log_2 (x \sqrt{1+x^2})\\ &((d/dx) log_ax=\frac{1}{xlna})\\ &=\frac{\sqrt{1+x^2}+x\frac{2x}{2\sqrt{1+x^2}}}{x\sqrt{1+x^2}ln2}\\ &=\frac{1+2x^2}{x(1+x^2)ln2} \end{aligned}


55. ddx(x1)/(x2x+1)\frac{d}{dx}(x-1)/(x^2-x+1)

ddxx1x2x+1=x2x+1(x1)(2x1)(x2x+1)2=x2x+1(2x23x+1)(x2x+1)2=x2+2x(x2x+1)2 \begin{aligned} &\frac{d}{dx} \frac{x-1}{x^2-x+1}\\ &=\frac{x^2-x+1-(x-1)(2x-1)}{(x^2-x+1)^2}\\ &=\frac{x^2-x+1-(2x^2-3x+1)}{(x^2-x+1)^2}\\ &=\frac{-x^2+2x}{(x^2-x+1)^2} \end{aligned}


56. ddx13cos3xcosx\frac{d}{dx}\frac{1}{3} cos^3x – cosx

ddx13cos3xcosx=133cos2x(sinx)+sinx=sinx(1cos2x)=sin3x \begin{aligned} &\frac{d}{dx} \frac{1}{3}cos^3x – cosx\\ &=\frac{1}{3}3cos^2x(-sinx)+sinx\\ &=sinx(1-cos^2x)=sin^3x \end{aligned}


57. ddxexcosx\frac{d}{dx}e^{xcosx}

ddxexcosx=excosx(cosxxsinx) \begin{aligned} &\frac{d}{dx}e^{xcosx}=e^{xcosx}(cosx-xsinx)\\ \end{aligned}


58. ddx(xx)(x+x)\frac{d}{dx}(x-\sqrt{x})(x+\sqrt{x})

ddx(xx)(x+x)=ddxx2x=2x1 \begin{aligned} &\frac{d}{dx}(x-\sqrt{x})(x+\sqrt{x})=\frac{d}{dx}x^2-x\\ &=2x-1 \end{aligned}


59. ddxarccot(1x)\frac{d}{dx}arccot(\frac{1}{x})

ddxarccot(1x)y=arccot1x,1x=coty,x2dx=csc2ydyR.T.,angle=y,o=x,a=1,h=x2+1dydx=x2csc2y=1x21+x2x2=11+x2(=ddxarctan(x)) \begin{aligned} &\frac{d}{dx}arccot(\frac 1 x)\\ & y=arccot \frac 1 x, \frac 1 x=cot y, -x^{-2}dx=-csc^2ydy\\ & R.T., angle=y, o=x, a=1, h=\sqrt{x^2+1} \\ & \frac {dy}{dx}=\frac {x^{-2}}{csc^2 y}=\frac{1}{x^2\frac{1+x^2}{x^2}}=\frac{1}{1+x^2} \\ &(=\frac{d}{dx}arctan(x)) \end{aligned}
Alt.
ddxarccot(x)=11+x2ddxarccot(1/x)=11+1/x2(1/x2)=1x2+1 \frac{d}{dx} arccot(x)=-\frac{1}{1+x^2}\\ \frac{d}{dx} arccot(1/x)=-\frac{1}{1+1/x^2}(-1/x^2)\\ =\frac{1}{x^2+1}


60. ddx(x)(arctanx)ln(x2+1)\frac{d}{dx}(x)(arctanx) – ln(\sqrt{x^2+1})

ddx(x)(arctanx)ln(x2+1)=arctanx+x11+x21x2+112x2+12x=arctanx+x1+x2x1+x2=arctanx \begin{aligned} &\frac{d}{dx}(x)(arctanx) – ln(\sqrt{x^2+1})\\ &=arctanx+x\frac{1}{1+x^2}-\frac{1}{\sqrt{x^2+1}}\frac{1}{2\sqrt{x^2+1}}2x\\ &=arctanx+\frac{x}{1+x^2}-\frac{x}{1+x^2}\\ &=arctan x \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
D operator  (0) 2019.11.07
derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05

+ Recent posts