derivative_br_01
1. dxdax2+bx+c
dxdax2+bx+c=2ax+b
2. dxd1+cos(x)sin(x)
dxd1+cos(x)sin(x)=(1+cosx)2(sinx)′(1+cosx)−sin(x)(1+cosx)′=(1+cosx)2cosx+cos2x+sin2(x)==1+cos(x)1
3. dxd(1+cosx)/sinx
dxdsinx(1+cosx)=sin2x(1+cosx)′sinx−(1+cosx)(sinx)′=sin2x−sin2x−cosx−cos2x=−1−cos2(x)1+cosx=−sin2x1+cosx=−1−cos(x)1
Alt.
dxdsinx(1+cosx)=(sinx1)′+(sinxcosx)′=(cscx)′+(cotx)′=−cscxcotx−csc2x=−cscx(cotx+cscx)
−cscx(cotx+cscx)=−sinx1(sinxcosx+1)=−sin2x1+cosx
4. dxdsqrt(3x+1)
dxd3x+1=23x+113=23x+13
5. dxdsin3x+sin(x3)
dxdsin3x+sin(x3)=3sin2xcosx+cos(x3)(3x2)=3sin2xcosx+3x2cos(x3)
6. dxd1/x4
dxdx41=(x−4)′=−x54
7. dxd(1+cotx)3
dxd(1+cotx)3=3(1+cotx)2(−csc2x)=−−3csc2x(1+cotx)2
8. dxdx2(2x3+1)10
dxdx2(2x3+1)10=(x2)′(2x3+1)10+(x2)((2x3+1)10)′=2x(2x3+1)10+x2(10(2x3+1)9(6x2))=2x(2x3+1)9(2x3+1+30x3)=2x(2x3+1)9(32x3+1)
9. dxdx/(x2+1)2
dxd(x2+1)2x=(x2+1)4(x2+1)2−x2(x2+1)2x=(x2+1)4(x2+1)(x2+1−4x2)=(x2+1)4(x2+1)(−3x2+1)=(x2+1)3(−3x2+1)
10. dxd20/(1+5e−2x)
dxd(1+5e−2x)20=(1+5e−2x)2−20(5e−2x)(−2)=(1+5e−2x)2200e−2x
Author: crazyj7@gmail.com