반응형
derivative_br_01

1. ddxax2+bx+c\frac{d}{dx}ax^2+bx+c

ddxax2+bx+c=2ax+b \begin{aligned} &\frac{d}{dx} ax^2+bx+c=2ax+b\\ \end{aligned}

2. ddxsin(x)1+cos(x)\frac{d}{dx}\frac{sin(x)}{1+cos(x)}

ddxsin(x)1+cos(x)=(sinx)(1+cosx)sin(x)(1+cosx)(1+cosx)2=cosx+cos2x+sin2(x)(1+cosx)2==11+cos(x) \begin{aligned} &\frac{d}{dx} \frac{sin(x)}{1+cos(x)}= \frac{(sinx)'(1+cosx)-sin(x)(1+cosx)'}{(1+cosx)^2} \\ &=\frac{cosx+cos^2x+sin^2(x)}{(1+cosx)^2}==\frac{1}{1+cos(x)} \end{aligned}

3. ddx(1+cosx)/sinx\frac{d}{dx} (1+cosx)/sinx

ddx(1+cosx)sinx=(1+cosx)sinx(1+cosx)(sinx)sin2x=sin2xcosxcos2xsin2x=1+cosx1cos2(x)=1+cosxsin2x=11cos(x) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = \frac{(1+cosx)'sinx-(1+cosx)(sinx)'}{sin^2x} \\ &=\frac{-sin^2x-cosx-cos^2x}{sin^2x}=-\frac{1+cosx}{1-cos^2(x)}\\ &=-\frac{1+cos x }{sin^2x}=-\frac{1}{1-cos(x)} \end{aligned}
Alt.
ddx(1+cosx)sinx=(1sinx)+(cosxsinx)=(cscx)+(cotx)=cscxcotxcsc2x=cscx(cotx+cscx) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = (\frac{1}{sinx})'+(\frac{cosx}{sinx})' \\ &=(csc x)'+(cot x)' = -csc x cot x-csc^2x\\ &=-cscx(cot x+cscx) \end{aligned}

cscx(cotx+cscx)=1sinx(cosx+1sinx)=1+cosxsin2x -cscx(cot x+cscx) = -\frac{1}{sinx}(\frac{cosx+1}{sin x})\\ =-\frac{1+cosx}{sin^2x}

4. ddxsqrt(3x+1)\frac{d}{dx}sqrt(3x+1)

ddx3x+1=123x+13=323x+1 \begin{aligned} &\frac{d}{dx} \sqrt{3x+1}= \frac{1}{2\sqrt{3x+1}}3=\frac{3}{2\sqrt{3x+1}} \end{aligned}

5. ddxsin3x+sin(x3)\frac{d}{dx} \sin^3 {x}+sin(x^3)

ddxsin3x+sin(x3)=3sin2xcosx+cos(x3)(3x2)=3sin2xcosx+3x2cos(x3) \begin{aligned} &\frac{d}{dx} \sin^3 {x}+sin(x^3)= 3sin^2xcosx+cos(x^3)(3x^2)\\ &=3sin^2xcosx+3x^2cos(x^3) \end{aligned}

6. ddx1/x4\frac{d}{dx} 1/x^4

ddx1x4=(x4)=4x5 \begin{aligned} &\frac{d}{dx} \frac{1}{x^4} = (x^{-4})'=-\frac{4}{x^5}\\ \end{aligned}

7. ddx(1+cotx)3\frac{d}{dx}(1+cotx)^3

ddx(1+cotx)3=3(1+cotx)2(csc2x)=3csc2x(1+cotx)2 \begin{aligned} &\frac{d}{dx} (1+cotx)^3 = 3(1+cotx)^2(-csc^2x)\\ &=--3csc^2x(1+cotx)^2 \end{aligned}

8. ddxx2(2x3+1)10\frac{d}{dx} x^2(2x^3+1)^{10}

ddxx2(2x3+1)10=(x2)(2x3+1)10+(x2)((2x3+1)10)=2x(2x3+1)10+x2(10(2x3+1)9(6x2))=2x(2x3+1)9(2x3+1+30x3)=2x(2x3+1)9(32x3+1) \begin{aligned} &\frac{d}{dx} x^2(2x^3+1)^{10}=(x^2)'(2x^3+1)^{10}+(x^2)((2x^3+1)^{10})'\\ &=2x(2x^3+1)^{10}+x^2(10(2x^3+1)^9(6x^2))\\ &=2x(2x^3+1)^{9}( 2x^3+1+ 30x^3 )\\ &=2x(2x^3+1)^{9}(32x^3+1) \end{aligned}

9. ddxx/(x2+1)2\frac{d}{dx} x/(x^2+1)^2

ddxx(x2+1)2=(x2+1)2x2(x2+1)2x(x2+1)4=(x2+1)(x2+14x2)(x2+1)4=(x2+1)(3x2+1)(x2+1)4=(3x2+1)(x2+1)3 \begin{aligned} &\frac{d}{dx} \frac{x}{(x^2+1)^2}=\frac{(x^2+1)^2-x2(x^2+1)2x}{(x^2+1)^4}\\ &=\frac{(x^2+1)(x^2+1-4x^2)}{(x^2+1)^4} =\frac{(x^2+1)(-3x^2+1)}{(x^2+1)^4}\\ &=\frac{(-3x^2+1)}{(x^2+1)^3} \end{aligned}

10. ddx20/(1+5e2x)\frac{d}{dx} 20/(1+5e^{-2x})

ddx20(1+5e2x)=20(5e2x)(2)(1+5e2x)2=200e2x(1+5e2x)2 \begin{aligned} &\frac{d}{dx} \frac{20}{(1+5e^{-2x})}=\frac{-20(5e^{-2x})(-2)}{(1+5e^{-2x})^2}\\ &=\frac{200e^{-2x}}{(1+5e^{-2x})^2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26

+ Recent posts