반응형
derivative_br_21

21. ddx(ysiny=xsinx)\frac{d}{dx}(ysiny = xsinx)

ddx(ysiny=xsinx)=ysiny+ycosyy=sinx+xcosx=y(siny+ycosy)=sinx+xcosxy=sinx+xcosxsiny+ycosy \begin{aligned} &\frac{d}{dx}(ysiny = xsinx)\\ &=y'siny+ycosyy'=sinx+xcosx\\ &=y'(siny+ycosy)=sinx+xcosx\\ &y'=\frac{sinx+xcosx}{siny+ycosy} \end{aligned}


22. ddx(ln(x/y)=exy3)\frac{d}{dx}(ln(x/y) = e^{xy^3})

ddx(ln(x/y)=exy3)=yx(x/y)=exy3(xy3)=yxyxyy2=exy3(y3+x3y2y)y2xyyxy2=y3exy3+3xy2exy3y1xyy=y3exy3+3xy2exy3y1xy3exy3=3xy2exy3y+yy1xy3exy3x=(1+3xy3exy3y)yy=1xy3exy3x(y1+3xy3exy3)y=yxy4exy3x+3x2y3exy3 \begin{aligned} &\frac{d}{dx}(ln(x/y) = e^{xy^3})\\ &=\frac{y}{x}(x/y)'=e^{xy^3}(xy^3)'\\ &=\frac{y}{x}\frac{y-xy'}{y^2}=e^{xy^3}(y^3+x3y^2y')\\ &\frac{y^2-xyy'}{xy^2}=y^3e^{xy^3}+3xy^2e^{xy^3}y'\\ &\frac{1}{x}-\frac{y'}{y}=y^3e^{xy^3}+3xy^2e^{xy^3}y'\\ &\frac{1}{x}-y^3e^{xy^3}=3xy^2e^{xy^3}y'+\frac{y'}{y}\\ &\frac{1-xy^3e^{xy^3}}{x}=(\frac{1+3xy^3e^{xy^3}}{y})y'\\ &y'=\frac{1-xy^3e^{xy^3}}{x}(\frac{y}{1+3xy^3e^{xy^3}})\\ &y'=\frac{y-xy^4e^{xy^3}}{x+3x^2y^3e^{xy^3}}\\ \end{aligned}
Alt.
ddx(ln(x/y)=exy3)ddx(ln(x)ln(y)=exy3)1xyy=exy3(y3+x3y2y)same as upper \begin{aligned} &\frac{d}{dx}(ln(x/y) = e^{xy^3})\\ &\frac{d}{dx}(ln(x)-ln(y) = e^{xy^3})\\ &\frac{1}{x}-\frac{y'}{y}=e^{xy^3}(y^3+x3y^2 y')\\ &\text{same as upper} \end{aligned}


23. ddx(x=sec(y))\frac{d}{dx}(x=sec(y))

ddx(x=sec(y))dx=sec(y)tan(y)dydydx=1sec(y)tan(y)(R.T.angle=y,a=1,h=x,o=x21)dydx=1xx21=(arctan(x)) \begin{aligned} &\frac{d}{dx}(x=sec(y))\\ &dx=sec(y)tan(y)dy\\ &\frac{dy}{dx}=\frac{1}{sec(y)tan(y)}\\ &(R.T. angle=y, a=1,h=x, o=\sqrt{x^2-1})\\ &\frac{dy}{dx}=\frac{1}{x\sqrt{x^2-1}}=(arctan(x))'\\ \end{aligned}


24. ddx((xy)2=sinx+siny)\frac{d}{dx}((x-y)^2 = sinx + siny )

ddx((xy)2=sinx+siny)2(xy)(1y)=cosx+cosyy=2(xy)2(xy)y=cosx+cosyy=2(xy)cosx=cosyy+2(xy)yy(cosy+2(xy))=2(xy)cosxy=2(xy)cosx2(xy)+cosy \begin{aligned} &\frac{d}{dx}((x-y)^2 = sinx + siny )\\ &2(x-y)(1-y')=cosx+cosyy'\\ &=2(x-y)-2(x-y)y'=cosx+cosyy'\\ &=2(x-y)-cosx=cosyy'+2(x-y)y'\\ &y'(cosy+2(x-y))=2(x-y)-cosx\\ &y'=\frac{2(x-y)-cosx}{2(x-y)+cosy}\\ \end{aligned}


25. ddx(xy=yx)\frac{d}{dx}( x^y = y^x)

ddx(xy=yx)ylnx=xlnyylnx+y(1/x)=lny+x(1/y)yy(lnxx(1/y))=lnyy(1/x)y=lnyy(1/x)lnxx(1/y)=xylnyy2xylnxx2 \begin{aligned} &\frac{d}{dx}( x^y = y^x)\\ &y ln x = x ln y \\ &y' lnx + y(1/x) =lny+x(1/y)y' \\ &y'(lnx-x(1/y))=ln y-y(1/x) \\ &y' = \frac{ln y-y(1/x)}{lnx-x(1/y)} \\ &= \frac{xy ln y-y^2}{ xylnx-x^2} \\ \end{aligned}


26. ddx(arctan(x2y)=x+y3)\frac{d}{dx}(arctan(x^2y) = x+y^3)

ddx(arctan(x2y)=x+y3)y=arctanx,x=tany,dx=sec2ydyR.Tangle=y,a=1,o=x,h=sqrt(x2+1)dy/dx=1sec2y=cos2y=11+x2ddx(arctan(x2y)=x+y3)11+x4y2(2xy+x2y)=1+3y2y2xy1+x4y2+x2y1+x4y2=1+3y2y2xy1+x4y21=3y2yx2y1+x4y22xy1x4y21+x4y2=(3y2x21+x4y2)y2xy1x4y21+x4y2=3y2+3x4y4x21+x4y2yy=2xy1x4y23y2+3x4y4x2=x4y22xy+13x4y4+x23y2 \begin{aligned} &\frac{d}{dx}(arctan(x^2y) = x+y^3)\\ &y=arctan x, x=tan y, dx=sec^2ydy\\ &R.T angle=y, a=1, o=x, h=sqrt(x^2+1)\\ &dy/dx = \frac{1}{sec^2y}=cos^2y=\frac{1}{1+x^2} \\ \\ &\frac{d}{dx}(arctan(x^2y) = x+y^3)\\ &\frac{1}{1+x^4y^2}(2xy+x^2y')=1+3y^2y'\\ &\frac{2xy}{1+x^4y^2}+\frac{x^2y'}{1+x^4y^2} =1+3y^2y'\\ &\frac{2xy}{1+x^4y^2}-1= 3y^2y'-\frac{x^2y'}{1+x^4y^2}\\ &\frac{2xy-1-x^4y^2}{1+x^4y^2}= (3y^2-\frac{x^2}{1+x^4y^2})y'\\ &\frac{2xy-1-x^4y^2}{1+x^4y^2}= \frac{3y^2+3x^4y^4-x^2}{1+x^4y^2}y'\\ &y'=\frac{2xy-1-x^4y^2}{3y^2+3x^4y^4-x^2}\\ &=\frac{x^4y^2-2xy+1}{-3x^4y^4+x^2-3y^2}\\ \end{aligned}


27. ddx(x2/(x2y2)=3y)\frac{d}{dx}(x^2/(x^2-y^2) = 3y)

ddx(x2/(x2y2)=3y)ddx(x2=3y(x2y2)=3x2y3y3)2x=6xy+3x2y9y2y2x6xy=y(3x29y2)y=2x6xy3x29y2 \begin{aligned} &\frac{d}{dx}(x^2/(x^2-y^2) = 3y)\\ &\frac{d}{dx}(x^2 = 3y(x^2-y^2)=3x^2y-3y^3)\\ &2x=6xy+3x^2y'-9y^2y'\\ &2x-6xy=y'(3x^2-9y^2)\\ &y'=\frac{2x-6xy}{3x^2-9y^2} \end{aligned}


28. ddx(ex/y=x+y2)\frac{d}{dx}(e^{x/y} = x + y^2)

ddx(ex/y=x+y2)ddx(xy=ln(x+y2))yxyy2=1x+y2(1+2yy)1y1x+y2=xyy2+2yyx+y2y(x+y2)y2=x(x+y2)y+2y3yy=y3y2+xyx2+xy2+2y3=y(x+y2)y2x(x+y2)+2y3=yex/yy2xex/y+2y3 \begin{aligned} &\frac{d}{dx}(e^{x/y} = x + y^2)\\ &\frac{d}{dx}(\frac{x}{y} = ln(x + y^2))\\ &\frac{y-xy'}{y^2} =\frac{1}{x + y^2}(1+2yy')\\ &\frac{1}{y} - \frac{1}{x + y^2}=\frac{xy'}{y^2}+\frac{2yy'}{x + y^2}\\ &y(x+y^2) - y^2=x(x+y^2)y'+2y^3y'\\ &y'=\frac{y^3-y^2+xy}{x^2+xy^2+2y^3}=\frac{y(x+y^2)-y^2}{x(x+y^2)+2y^3}\\ &=\frac{ye^{x/y}-y^2}{xe^{x/y}+2y^3} \end{aligned}


29. ddx((x2+y21)3=y)\frac{d}{dx}((x^2 + y^2 – 1)^3 = y)

ddx((x2+y21)3=y)3(x2+y21)2(2x+2yy)=y3(x2+y21)2(2x)+3(x2+y21)2(2yy)=y6x(x2+y21)2+6y(x2+y21)2y=yy=6x(x2+y21)216y(x2+y21)2 \begin{aligned} &\frac{d}{dx}((x^2 + y^2 – 1)^3 = y)\\ &3(x^2+y^2-1)^2(2x+2yy')=y'\\ &3(x^2+y^2-1)^2(2x)+3(x^2+y^2-1)^2(2yy')=y'\\ &6x(x^2+y^2-1)^2+6y(x^2+y^2-1)^2y'=y'\\ &y'=\frac{6x(x^2+y^2-1)^2}{1-6y(x^2+y^2-1)^2}\\ \end{aligned}


30. d2ydx2(9x2+y2=9)\frac{d^2y}{dx^2} (9x^2 + y^2 = 9)

d2ydx2(9x2+y2=9)ddx(ddx(9x2+y2=9))ddx(9x2+y2=9)18x+2yy=0y=9xyy=9yxyy2=9yx(9xy)y2=9y+9x2/yy2=9y81x2y3=9y2+9x2y3=81y3 \begin{aligned} &\frac{d^2y}{dx^2} (9x^2 + y^2 = 9)\\ &\frac{d}{dx}(\frac{d}{dx} (9x^2 + y^2 = 9) )\\ &\frac{d}{dx} (9x^2 + y^2 = 9) \\ &18x+2yy'=0\\ &y'=-\frac{9x}{y} \\ &y'' = -9\frac{y-xy'}{y^2}=-9\frac{y-x(-9\frac{x}{y})}{y^2}\\ &=-9\frac{y+9x^2/y}{y^2}=-\frac{9}{y}-81\frac{x^2}{y^3}\\ &=-9\frac{y^2+9x^2}{y^3}=-\frac{81}{y^3} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05
derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
반응형
derivative_br_11

11. ddxex+ex\frac{d}{dx} \sqrt{e^x}+e^{\sqrt{x}}

ddxex+ex=(ex2)+(ex12)=ex2(12)+ex(12x)=12ex+ex2x \begin{aligned} &\frac{d}{dx} \sqrt{e^x}+e^{\sqrt{x}}\\ &=(e^{\frac{x}{2}})' + (e^{x^{\frac{1}{2}}})'\\ &=e^{\frac{x}{2}}(\frac{1}{2})+e^{\sqrt{x}}(\frac{1}{2\sqrt{x}})\\ &=\frac{1}{2}\sqrt{e^x}+\frac{e^{\sqrt{x}}}{2\sqrt{x}} \end{aligned}


12. ddxsec3(2x)\frac{d}{dx} sec^3(2x)

ddxsec3(2x)=3sec2(2x)(sec(2x)tan(2x))2=6sec3(2x)tan(2x) \begin{aligned} &\frac{d}{dx} sec^3(2x)\\ &=3sec^2(2x)(sec(2x)tan(2x))2\\ &=6sec^3(2x)tan(2x) \end{aligned}


13. ddx12(secx)(tanx)+12ln(secx+tanx)\frac{d}{dx} \frac{1}{2} (secx)(tanx) + \frac{1}{2} ln(secx + tanx)

ddx12(secx)(tanx)+12ln(secx+tanx)=12(secxtanxtanx+secxsec2x)+12(secx+tanx)(secxtanx+sec2x)=12secx(tan2x+sec2x)+secx(tanx+secx)2(secx+tanx)=12secx(1+tan2x+sec2x)=12secx2sec2x=sec3x \begin{aligned} &\frac{d}{dx} \frac{1}{2} (secx)(tanx) + \frac{1}{2} ln(secx + tanx)\\ &=\frac{1}{2}(secxtanxtanx+secxsec^2x)+\frac{1}{2(secx+tanx)}(secxtanx+sec^2x)\\ &=\frac{1}{2}sec x(tan^2x+sec^2x)+\frac{secx(tanx+secx)}{2(secx+tanx)}\\ &=\frac{1}{2}secx(1+tan^2x+sec^2x)=\frac{1}{2}secx 2sec^2x\\ &=sec^3x \end{aligned}


14. ddx(xex)/(1+ex)\frac{d}{dx} (xe^x)/(1+e^x)

ddxxex1+ex((xex)=ex+xex)=(xex)(1+ex)(xex)(1+ex)(1+ex)2=(ex+xex)(1+ex)(xex)(ex)(1+ex)2=ex(1+x)(1+ex)xe2x(1+ex)2=ex((1+xex+ex+x)xex)(1+ex)2=ex(1+ex+x)(1+ex)2 \begin{aligned} &\frac{d}{dx} \frac{xe^x}{1+e^x}\\ &((xe^x)' = e^x+xe^x)\\ &=\frac{(xe^x)'(1+e^x) - (xe^x)(1+e^x)'}{(1+e^x)^2}\\ &=\frac{(e^x+xe^x)(1+e^x) - (xe^x)(e^x)}{(1+e^x)^2}\\ &=\frac{e^x(1+x)(1+e^x)-xe^{2x}}{(1+e^x)^2}\\ &=\frac{e^x((1+xe^x+e^x+x)-xe^{x})}{(1+e^x)^2}\\ &=\frac{e^x(1+e^x+x)}{(1+e^x)^2}\\ \end{aligned}


15. ddx(e4x)(cos(x/2))\frac{d}{dx} (e^{4x})(cos(x/2))

ddx(e4x)(cos(x2))=(e4x)(cos(x2))+(e4x)(cos(x2))=(e4x4)cos(x2)+e4x(sin(x2)12)=4e4xcos(x2)12e4xsin(x2) \begin{aligned} &\frac{d}{dx} (e^{4x})(cos(\frac{x}{2}))\\ &=(e^{4x})'(cos(\frac{x}{2}))+(e^{4x})(cos(\frac{x}{2}))'\\ &=(e^{4x}4)cos(\frac{x}{2})+e^{4x}(-sin(\frac{x}{2})\frac{1}{2})\\ &=4e^{4x}cos(\frac{x}{2})-\frac{1}{2}e^{4x}sin(\frac{x}{2}) \end{aligned}


16. ddx1x324\frac{d}{dx} \frac{1}{\sqrt[4]{x^3 - 2}}

ddx1x324=ddx(x32)14=14(x32)54(3x2)=3x24(x32)x324=3x24(x32)54 \begin{aligned} &\frac{d}{dx} \frac{1}{\sqrt[4]{x^3 - 2}}=\frac{d}{dx} (x^3 - 2)^{-\frac{1}{4}}\\ &=-\frac{1}{4} (x^3 - 2)^{-\frac{5}{4}}(3x^2)\\ &=-\frac{3x^2}{4(x^3-2)\sqrt[4]{x^3 - 2}}\\ &=-\frac{3x^2}{4\sqrt[4]{(x^3 - 2)^5}}\\ \end{aligned}


17. ddxarctan(sqrt(x21))\frac{d}{dx} arctan(sqrt(x^2-1))

ddxtan1(x21)(y=arctan(x),tany=x,sec2ydy=dx)(R.Tangle=y,a=1,o=x,h=1+x2)(dy/dx=1sec2y=cos2y=11+x2)=cos2(tan1(x21))12x212x=cos2(tan1(x21))xx21=11+x21xx21=1xx21 \begin{aligned} &\frac{d}{dx} tan^{-1}(\sqrt{x^2-1})\\ & (y=arctan (x), tan y=x, sec^2ydy=dx)\\ &(R.T angle=y, a=1, o=x, h=\sqrt{1+x^2})\\ & (dy/dx = \frac{1}{sec^2y}=cos^2y=\frac{1}{1+x^2})\\ &=cos^2(tan^{-1}(\sqrt{x^2-1}))\frac{1}{2\sqrt{x^2-1}}2x\\ &=cos^2(tan^{-1}(\sqrt{x^2-1}))\frac{x}{\sqrt{x^2-1}}\\ &=\frac{1}{1+x^2-1}\frac{x}{\sqrt{x^2-1}}\\ &=\frac{1}{x\sqrt{x^2-1}} \end{aligned}


18. ddx(lnx)/x3\frac{d}{dx} (lnx)/x^3

ddxlnxx3=1xx3lnx(3x2)x6=x23x2lnxx6=13lnxx4 \begin{aligned} &\frac{d}{dx} \frac{lnx}{x^3}=\frac{\frac{1}{x}x^3-lnx(3x^2)}{x^6}\\ &=\frac{x^2-3x^2lnx}{x^6}=\frac{1-3lnx}{x^4} \end{aligned}


19. ddxxx\frac{d}{dx} x^x

ddxxx(y=xx,logxy=x,lnylnx=x)(lny=xlnx,1ydy=(lnx+1)dx)dydx=(1+lnx)y=(1+lnx)xx \begin{aligned} &\frac{d}{dx} x^x\\ &(y=x^x, log_xy=x, \frac{ln y}{ln x}=x)\\ &(lny = xlnx, \frac{1}{y}dy=(lnx+1)dx)\\ &\frac{dy}{dx}=(1+lnx)y=(1+lnx)x^x \end{aligned}
Alt.
ddxxx,(x=elnx)=ddx(elnx)x=ddx(exlnx)=exlnx(lnx+1)=xx(lnx+1) \frac{d}{dx} x^x, (x=e^{lnx})\\ =\frac{d}{dx} (e^{lnx})^x=\frac{d}{dx} (e^{xlnx})\\ =e^{xlnx}(lnx+1)\\ =x^x(lnx+1)


20. ddx(x3+y3=6xy)\frac{d}{dx}(x^3+y^3=6xy)

ddx(x3+y3=6xy)3x2dx+3y2dy=6ydx+6xdy(3x26y)dx=(6x3y2)dydydx=3x26y6x3y2=x22y2xy2 \begin{aligned} &\frac{d}{dx}(x^3+y^3=6xy) \\ &3x^2dx+3y^2dy=6ydx+6xdy\\ &(3x^2-6y)dx=(6x-3y^2)dy\\ &\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}\\ &=\frac{x^2-2y}{2x-y^2} \end{aligned}
Alt.
x3+y3=6xy:(Dx)3x2+3y2y=6y+6xy(3x26y)=(6x3y2)yy=3x26y6x3y2=x22y2xy2 \begin{aligned} &x^3+y^3=6xy :(Dx)\\ &3x^2+3y^2y'=6y+6xy'\\ &(3x^2-6y)=(6x-3y^2)y'\\ &y'=\frac{3x^2-6y}{6x-3y^2}\\ &=\frac{x^2-2y}{2x-y^2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [31-40]  (0) 2019.11.05
derivative100 [21-30]  (0) 2019.11.04
derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27

+ Recent posts