반응형
derivative_br_11

11. ddxex+ex\frac{d}{dx} \sqrt{e^x}+e^{\sqrt{x}}

ddxex+ex=(ex2)+(ex12)=ex2(12)+ex(12x)=12ex+ex2x \begin{aligned} &\frac{d}{dx} \sqrt{e^x}+e^{\sqrt{x}}\\ &=(e^{\frac{x}{2}})' + (e^{x^{\frac{1}{2}}})'\\ &=e^{\frac{x}{2}}(\frac{1}{2})+e^{\sqrt{x}}(\frac{1}{2\sqrt{x}})\\ &=\frac{1}{2}\sqrt{e^x}+\frac{e^{\sqrt{x}}}{2\sqrt{x}} \end{aligned}


12. ddxsec3(2x)\frac{d}{dx} sec^3(2x)

ddxsec3(2x)=3sec2(2x)(sec(2x)tan(2x))2=6sec3(2x)tan(2x) \begin{aligned} &\frac{d}{dx} sec^3(2x)\\ &=3sec^2(2x)(sec(2x)tan(2x))2\\ &=6sec^3(2x)tan(2x) \end{aligned}


13. ddx12(secx)(tanx)+12ln(secx+tanx)\frac{d}{dx} \frac{1}{2} (secx)(tanx) + \frac{1}{2} ln(secx + tanx)

ddx12(secx)(tanx)+12ln(secx+tanx)=12(secxtanxtanx+secxsec2x)+12(secx+tanx)(secxtanx+sec2x)=12secx(tan2x+sec2x)+secx(tanx+secx)2(secx+tanx)=12secx(1+tan2x+sec2x)=12secx2sec2x=sec3x \begin{aligned} &\frac{d}{dx} \frac{1}{2} (secx)(tanx) + \frac{1}{2} ln(secx + tanx)\\ &=\frac{1}{2}(secxtanxtanx+secxsec^2x)+\frac{1}{2(secx+tanx)}(secxtanx+sec^2x)\\ &=\frac{1}{2}sec x(tan^2x+sec^2x)+\frac{secx(tanx+secx)}{2(secx+tanx)}\\ &=\frac{1}{2}secx(1+tan^2x+sec^2x)=\frac{1}{2}secx 2sec^2x\\ &=sec^3x \end{aligned}


14. ddx(xex)/(1+ex)\frac{d}{dx} (xe^x)/(1+e^x)

ddxxex1+ex((xex)=ex+xex)=(xex)(1+ex)(xex)(1+ex)(1+ex)2=(ex+xex)(1+ex)(xex)(ex)(1+ex)2=ex(1+x)(1+ex)xe2x(1+ex)2=ex((1+xex+ex+x)xex)(1+ex)2=ex(1+ex+x)(1+ex)2 \begin{aligned} &\frac{d}{dx} \frac{xe^x}{1+e^x}\\ &((xe^x)' = e^x+xe^x)\\ &=\frac{(xe^x)'(1+e^x) - (xe^x)(1+e^x)'}{(1+e^x)^2}\\ &=\frac{(e^x+xe^x)(1+e^x) - (xe^x)(e^x)}{(1+e^x)^2}\\ &=\frac{e^x(1+x)(1+e^x)-xe^{2x}}{(1+e^x)^2}\\ &=\frac{e^x((1+xe^x+e^x+x)-xe^{x})}{(1+e^x)^2}\\ &=\frac{e^x(1+e^x+x)}{(1+e^x)^2}\\ \end{aligned}


15. ddx(e4x)(cos(x/2))\frac{d}{dx} (e^{4x})(cos(x/2))

ddx(e4x)(cos(x2))=(e4x)(cos(x2))+(e4x)(cos(x2))=(e4x4)cos(x2)+e4x(sin(x2)12)=4e4xcos(x2)12e4xsin(x2) \begin{aligned} &\frac{d}{dx} (e^{4x})(cos(\frac{x}{2}))\\ &=(e^{4x})'(cos(\frac{x}{2}))+(e^{4x})(cos(\frac{x}{2}))'\\ &=(e^{4x}4)cos(\frac{x}{2})+e^{4x}(-sin(\frac{x}{2})\frac{1}{2})\\ &=4e^{4x}cos(\frac{x}{2})-\frac{1}{2}e^{4x}sin(\frac{x}{2}) \end{aligned}


16. ddx1x324\frac{d}{dx} \frac{1}{\sqrt[4]{x^3 - 2}}

ddx1x324=ddx(x32)14=14(x32)54(3x2)=3x24(x32)x324=3x24(x32)54 \begin{aligned} &\frac{d}{dx} \frac{1}{\sqrt[4]{x^3 - 2}}=\frac{d}{dx} (x^3 - 2)^{-\frac{1}{4}}\\ &=-\frac{1}{4} (x^3 - 2)^{-\frac{5}{4}}(3x^2)\\ &=-\frac{3x^2}{4(x^3-2)\sqrt[4]{x^3 - 2}}\\ &=-\frac{3x^2}{4\sqrt[4]{(x^3 - 2)^5}}\\ \end{aligned}


17. ddxarctan(sqrt(x21))\frac{d}{dx} arctan(sqrt(x^2-1))

ddxtan1(x21)(y=arctan(x),tany=x,sec2ydy=dx)(R.Tangle=y,a=1,o=x,h=1+x2)(dy/dx=1sec2y=cos2y=11+x2)=cos2(tan1(x21))12x212x=cos2(tan1(x21))xx21=11+x21xx21=1xx21 \begin{aligned} &\frac{d}{dx} tan^{-1}(\sqrt{x^2-1})\\ & (y=arctan (x), tan y=x, sec^2ydy=dx)\\ &(R.T angle=y, a=1, o=x, h=\sqrt{1+x^2})\\ & (dy/dx = \frac{1}{sec^2y}=cos^2y=\frac{1}{1+x^2})\\ &=cos^2(tan^{-1}(\sqrt{x^2-1}))\frac{1}{2\sqrt{x^2-1}}2x\\ &=cos^2(tan^{-1}(\sqrt{x^2-1}))\frac{x}{\sqrt{x^2-1}}\\ &=\frac{1}{1+x^2-1}\frac{x}{\sqrt{x^2-1}}\\ &=\frac{1}{x\sqrt{x^2-1}} \end{aligned}


18. ddx(lnx)/x3\frac{d}{dx} (lnx)/x^3

ddxlnxx3=1xx3lnx(3x2)x6=x23x2lnxx6=13lnxx4 \begin{aligned} &\frac{d}{dx} \frac{lnx}{x^3}=\frac{\frac{1}{x}x^3-lnx(3x^2)}{x^6}\\ &=\frac{x^2-3x^2lnx}{x^6}=\frac{1-3lnx}{x^4} \end{aligned}


19. ddxxx\frac{d}{dx} x^x

ddxxx(y=xx,logxy=x,lnylnx=x)(lny=xlnx,1ydy=(lnx+1)dx)dydx=(1+lnx)y=(1+lnx)xx \begin{aligned} &\frac{d}{dx} x^x\\ &(y=x^x, log_xy=x, \frac{ln y}{ln x}=x)\\ &(lny = xlnx, \frac{1}{y}dy=(lnx+1)dx)\\ &\frac{dy}{dx}=(1+lnx)y=(1+lnx)x^x \end{aligned}
Alt.
ddxxx,(x=elnx)=ddx(elnx)x=ddx(exlnx)=exlnx(lnx+1)=xx(lnx+1) \frac{d}{dx} x^x, (x=e^{lnx})\\ =\frac{d}{dx} (e^{lnx})^x=\frac{d}{dx} (e^{xlnx})\\ =e^{xlnx}(lnx+1)\\ =x^x(lnx+1)


20. ddx(x3+y3=6xy)\frac{d}{dx}(x^3+y^3=6xy)

ddx(x3+y3=6xy)3x2dx+3y2dy=6ydx+6xdy(3x26y)dx=(6x3y2)dydydx=3x26y6x3y2=x22y2xy2 \begin{aligned} &\frac{d}{dx}(x^3+y^3=6xy) \\ &3x^2dx+3y^2dy=6ydx+6xdy\\ &(3x^2-6y)dx=(6x-3y^2)dy\\ &\frac{dy}{dx}=\frac{3x^2-6y}{6x-3y^2}\\ &=\frac{x^2-2y}{2x-y^2} \end{aligned}
Alt.
x3+y3=6xy:(Dx)3x2+3y2y=6y+6xy(3x26y)=(6x3y2)yy=3x26y6x3y2=x22y2xy2 \begin{aligned} &x^3+y^3=6xy :(Dx)\\ &3x^2+3y^2y'=6y+6xy'\\ &(3x^2-6y)=(6x-3y^2)y'\\ &y'=\frac{3x^2-6y}{6x-3y^2}\\ &=\frac{x^2-2y}{2x-y^2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [31-40]  (0) 2019.11.05
derivative100 [21-30]  (0) 2019.11.04
derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27
반응형
derivative_br_01

1. ddxax2+bx+c\frac{d}{dx}ax^2+bx+c

ddxax2+bx+c=2ax+b \begin{aligned} &\frac{d}{dx} ax^2+bx+c=2ax+b\\ \end{aligned}

2. ddxsin(x)1+cos(x)\frac{d}{dx}\frac{sin(x)}{1+cos(x)}

ddxsin(x)1+cos(x)=(sinx)(1+cosx)sin(x)(1+cosx)(1+cosx)2=cosx+cos2x+sin2(x)(1+cosx)2==11+cos(x) \begin{aligned} &\frac{d}{dx} \frac{sin(x)}{1+cos(x)}= \frac{(sinx)'(1+cosx)-sin(x)(1+cosx)'}{(1+cosx)^2} \\ &=\frac{cosx+cos^2x+sin^2(x)}{(1+cosx)^2}==\frac{1}{1+cos(x)} \end{aligned}

3. ddx(1+cosx)/sinx\frac{d}{dx} (1+cosx)/sinx

ddx(1+cosx)sinx=(1+cosx)sinx(1+cosx)(sinx)sin2x=sin2xcosxcos2xsin2x=1+cosx1cos2(x)=1+cosxsin2x=11cos(x) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = \frac{(1+cosx)'sinx-(1+cosx)(sinx)'}{sin^2x} \\ &=\frac{-sin^2x-cosx-cos^2x}{sin^2x}=-\frac{1+cosx}{1-cos^2(x)}\\ &=-\frac{1+cos x }{sin^2x}=-\frac{1}{1-cos(x)} \end{aligned}
Alt.
ddx(1+cosx)sinx=(1sinx)+(cosxsinx)=(cscx)+(cotx)=cscxcotxcsc2x=cscx(cotx+cscx) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = (\frac{1}{sinx})'+(\frac{cosx}{sinx})' \\ &=(csc x)'+(cot x)' = -csc x cot x-csc^2x\\ &=-cscx(cot x+cscx) \end{aligned}

cscx(cotx+cscx)=1sinx(cosx+1sinx)=1+cosxsin2x -cscx(cot x+cscx) = -\frac{1}{sinx}(\frac{cosx+1}{sin x})\\ =-\frac{1+cosx}{sin^2x}

4. ddxsqrt(3x+1)\frac{d}{dx}sqrt(3x+1)

ddx3x+1=123x+13=323x+1 \begin{aligned} &\frac{d}{dx} \sqrt{3x+1}= \frac{1}{2\sqrt{3x+1}}3=\frac{3}{2\sqrt{3x+1}} \end{aligned}

5. ddxsin3x+sin(x3)\frac{d}{dx} \sin^3 {x}+sin(x^3)

ddxsin3x+sin(x3)=3sin2xcosx+cos(x3)(3x2)=3sin2xcosx+3x2cos(x3) \begin{aligned} &\frac{d}{dx} \sin^3 {x}+sin(x^3)= 3sin^2xcosx+cos(x^3)(3x^2)\\ &=3sin^2xcosx+3x^2cos(x^3) \end{aligned}

6. ddx1/x4\frac{d}{dx} 1/x^4

ddx1x4=(x4)=4x5 \begin{aligned} &\frac{d}{dx} \frac{1}{x^4} = (x^{-4})'=-\frac{4}{x^5}\\ \end{aligned}

7. ddx(1+cotx)3\frac{d}{dx}(1+cotx)^3

ddx(1+cotx)3=3(1+cotx)2(csc2x)=3csc2x(1+cotx)2 \begin{aligned} &\frac{d}{dx} (1+cotx)^3 = 3(1+cotx)^2(-csc^2x)\\ &=--3csc^2x(1+cotx)^2 \end{aligned}

8. ddxx2(2x3+1)10\frac{d}{dx} x^2(2x^3+1)^{10}

ddxx2(2x3+1)10=(x2)(2x3+1)10+(x2)((2x3+1)10)=2x(2x3+1)10+x2(10(2x3+1)9(6x2))=2x(2x3+1)9(2x3+1+30x3)=2x(2x3+1)9(32x3+1) \begin{aligned} &\frac{d}{dx} x^2(2x^3+1)^{10}=(x^2)'(2x^3+1)^{10}+(x^2)((2x^3+1)^{10})'\\ &=2x(2x^3+1)^{10}+x^2(10(2x^3+1)^9(6x^2))\\ &=2x(2x^3+1)^{9}( 2x^3+1+ 30x^3 )\\ &=2x(2x^3+1)^{9}(32x^3+1) \end{aligned}

9. ddxx/(x2+1)2\frac{d}{dx} x/(x^2+1)^2

ddxx(x2+1)2=(x2+1)2x2(x2+1)2x(x2+1)4=(x2+1)(x2+14x2)(x2+1)4=(x2+1)(3x2+1)(x2+1)4=(3x2+1)(x2+1)3 \begin{aligned} &\frac{d}{dx} \frac{x}{(x^2+1)^2}=\frac{(x^2+1)^2-x2(x^2+1)2x}{(x^2+1)^4}\\ &=\frac{(x^2+1)(x^2+1-4x^2)}{(x^2+1)^4} =\frac{(x^2+1)(-3x^2+1)}{(x^2+1)^4}\\ &=\frac{(-3x^2+1)}{(x^2+1)^3} \end{aligned}

10. ddx20/(1+5e2x)\frac{d}{dx} 20/(1+5e^{-2x})

ddx20(1+5e2x)=20(5e2x)(2)(1+5e2x)2=200e2x(1+5e2x)2 \begin{aligned} &\frac{d}{dx} \frac{20}{(1+5e^{-2x})}=\frac{-20(5e^{-2x})(-2)}{(1+5e^{-2x})^2}\\ &=\frac{200e^{-2x}}{(1+5e^{-2x})^2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26

+ Recent posts