반응형
10D_notation

D notation/operator

D[(D+2t)[t38]]D[(D+2t)[t^3-8]]

(D+2t)[D[t38]](D+2t)[D[t^3-8]]

D(D+2t)(D+2t)DD(D+2t) \ne (D+2t)D
내부에 t가 있으면 교환법칙 성립안함.
D(D+2)=(D+2)D=D2+2DD(D+2) = (D+2)D=D^2+2D
내부에 t가 없으면 교환가능

(D+2)[(D1)[t38]](D+2)[(D-1)[t^3-8]]

(D1)[(D+2)[t38])(D-1)[(D+2)[t^3-8])

(D2+D2)[t38](D^2+D-2)[t^3-8]

(D+2)(D1)=(D1)(D+2)(D+2)(D-1)=(D-1)(D+2)
(D+2)(D1)=(D2+D2)(D+2)(D-1)=(D^2+D-2)

System D.E.

{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10t}x'(t)=3x(t)-4y(t)+1 \brace y'(t)=4x(t)-7y(t)+10t

{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10ty(t)=4x7y+104x=12x16y+43y=12x21y+30t4x3y=5y+430t4x=3y+5y+430ty=3y+5y+430t7y+10y+4y5y=30t+14found 2nd order LDE. \begin{cases} x'(t) &= 3x(t)-4y(t)+1 \\ y'(t) &= 4x(t)-7y(t)+10t \\ \end{cases} \\ y''(t) = 4x'-7y'+10 \\ 4x'=12x-16y+4\\ 3y'=12x-21y+30t\\ 4x'-3y'=5y+4-30t\\ 4x' = 3y'+5y+4-30t \\ y'' =3y'+5y+4-30t-7y'+10 \\ y'' +4y' -5y = -30t + 14 \\ \text{found 2nd order LDE.}
yh:r2+4r5=0,(r1)(r+5)=0r=15yh:et,e5typform:At+By=A,y=0y+4y5y=30t+140+4A5At5B=30t+14A=6,245B=14,B=2yp=6t+2y=Det+Ee5t+6t+2 y_h: r^2+4r-5=0, (r-1)(r+5)=0\\ r=1 \lor -5 \\ y_h: e^t, e^{-5t} \\ y_p form: At+B\\ y'=A, y''=0\\ y'' +4y' -5y = -30t + 14 \\ 0+4A-5At-5B=-30t+14\\ A=6, \quad 24-5B=14, \quad B=2\\ y_p = 6t+2\\ y = De^t+Ee^{-5t}+6t+2\\

연립방정식에서 x DE를 y처럼 구할수도 있지만  y를 대입해서 구한다.y(t)=4x(t)7y(t)+10t4x(t)=y+7y10t=Det5Ee5t+6+7Det+7Ee5t+42t+1410t=2Ee5t+8Det+32t+20x(t)=12Ee5t+2Det+8t+5 \text{연립방정식에서 x DE를 y처럼 구할수도 있지만 \\ y를 대입해서 구한다.}\\ y'(t) = 4x(t)-7y(t)+10t\\ 4x(t) = y'+7y-10t\\ =De^t-5Ee^{-5t}+6+7De^t+7Ee^{-5t}+42t+14-10t\\ =2Ee^{-5t}+8De^t+32t+20\\ x(t) = \frac 1 2Ee^{-5t}+2De^t+8t+5

Alt. Use D operator (D 연산자를 이용한 방식)
{x(t)=3x(t)4y(t)+1y(t)=4x(t)7y(t)+10t{x3x+4y=14x+y+7y=10t{(D3)(x)+4y=14x+(D+7)(y)=10t{4(D3)(x)+16y=4(D3)(4x)+(D3)(D+7)(y)=(D3)(10t) \begin{cases} x'(t) &= 3x(t)-4y(t)+1 \\ y'(t) &= 4x(t)-7y(t)+10t \\ \end{cases} \\ \begin{cases} x' -3x +4y &= 1 \\ -4x +y'+7y&= 10t \\ \end{cases} \\ \begin{cases} (D-3)(x) +4y &= 1 \\ -4x +(D+7)(y)&= 10t \\ \end{cases} \\ \begin{cases} 4(D-3)(x) +16y &= 4 \\ (D-3)(-4x) +(D-3)(D+7)(y)&= (D-3)(10t) \\ \end{cases} \\
16y+(D3)(D+7)(y)=(D3)(10t)+416y+(D2+4D21)y=1030t+416y+y+4y21y=30t+14y+4y5y=30t+14 16y+(D-3)(D+7)(y) = (D-3)(10t)+4\\ 16y+(D^2+4D-21)y = 10-30t+4\\ 16y+y''+4y'-21y=-30t+14\\ y''+4y'-5y=-30t+14 \\
위와 동일한 2계 미방을 구했다. 이하 생략.

y+4y5y=1430ty''+4y'-5y=14-30t

(D2+4D5)y=1430tD2(D2+4D5)y=D2(1430t)=0D2(D2+4D5)=0D2(D+5)(D1)=0D=0(repeated),1,5yform:C,Ct,et,e5typform:At+B(C, Ct same form.)input:ypy+4y5y=1430t0+4A5At5B=1430tA=6,B=2yp=6t+2y=C1et+C2e5t+6t+2 (D^2+4D-5) y = 14-30t\\ D^2(D^2+4D-5) y = D^2(14-30t)=0\\ D^2(D^2+4D-5)=0\\ D^2(D+5)(D-1)=0\\ D=0(repeated), 1, -5\\ y form: C, Ct, e^t, e^{-5t}\\ y_p form : At+B (\text{C, Ct same form.})\\ input : y_p \\ y''+4y'-5y=14-30t \\ 0+4A-5At-5B=14-30t\\ A=6, B=2\\ y_p = 6t+2\\ y = C_1e^t+C_2e^{-5t}+6t+2

system of differential equation.

Q {x+y+2x=0x+yxy=sin(t)}x'+y'+2x=0 \brace x'+y'-x-y=sin(t)

{x+y+2x=0(1)x+yxy=sin(t)(2){(D+2)x+Dy=0(D1)x+(D1)y=sin(t)substract{(D1)(D+2)x+(D1)Dy=(D1)0(D+2)(D1)x+(D+2)(D1)y=(D+2)sin(t)(D2D)y(D2+D2)y=(D+2)sin(t)yy(y+y2y)=(cos(t)+2sin(t))2y+2y=cos(t)2sin(t) \begin{cases} x'+y'+2x=0 \quad &(1)\\ x'+y'-x-y=sin(t) \quad &(2) \end{cases} \\ \begin{cases} (D+2)x+Dy=0 \\ (D-1)x+(D-1)y=sin(t) \end{cases}\\ substract \begin{cases} (D-1)(D+2)x+(D-1)Dy=(D-1)0 \\ (D+2)(D-1)x+(D+2)(D-1)y=(D+2)sin(t) \end{cases}\\ (D^2-D)y-(D^2+D-2)y=-(D+2)sin(t)\\ y''-y'-(y''+y'-2y)=-(cos(t)+2sin(t))\\ -2y'+2y=-cos(t)-2sin(t)\\

2y2y=cos(t)+2sin(t)(2D2)y=cos(t)+2sin(t)yh:2r2=0,r=1yh=C1etypform:yp=Acos(t)+Bsin(t)yp=Asin(t)+Bcos(t)2y2y=cos(t)+2sin(t)2Asin(t)+2Bcos(t)2Acos(t)2Bsin(t)=cos(t)+2sin(t)(2B2A)cos(t)+(2A2B)sin(t)=cos(t)+2sin(t)2B2A=1,2A2B=24A=3,A=34,2B+32=1,2B=12B=14y=C1et34cos(t)14sin(t) 2y'-2y=cos(t)+2sin(t)\\ (2D-2)y=cos(t)+2sin(t)\\ y_h : 2r-2=0, r=1 \\ y_h = C_1e^{t}\\ y_p form : y_p = Acos(t)+Bsin(t)\\ y_p' = -Asin(t)+Bcos(t) \\ 2y'-2y=cos(t)+2sin(t) \\ -2Asin(t)+2Bcos(t)-2Acos(t)-2Bsin(t) = cos(t)+2sin(t) \\ (2B-2A)cos(t)+(-2A-2B)sin(t) = cos(t)+2sin(t)\\ 2B-2A=1, -2A-2B=2 \\ -4A=3, A=-\frac 3 4 , 2B+\frac 3 2 = 1, 2B=-\frac 1 2\\ B=-\frac 1 4\\ \therefore y = C_1e^{t}-\frac 3 4 cos(t)-\frac 1 4 sin(t) \\
Alternative.
2y+2y=cos(t)2sin(t)yy=12cos(t)+sin(t)Int.Factor=e1dt=et(ety)=et(12cos(t)+sin(t))ety=et(12cos(t)+sin(t))dt=12etcos(t)dt+etsin(t)dtetcos(t)dt=etsin(t)(et)(cos(t))+et(cos(t))dtetcos(t)dt=12et(sin(t)cos(t))etsin(t)dt=et(cos(t))(et)(sin(t))+et(sin(t))dtetsin(t)dt=12et(cos(t)+sin(t))ety=14et(sin(t)cos(t))12et(cos(t)+sin(t))+C1y=14(sin(t)cos(t))12(cos(t)+sin(t))+C1ety=34cos(t)14sin(t)+C1etsame result. good.y=C1et+34sin(t)14cos(t) -2y'+2y=-cos(t)-2sin(t)\\ y'-y=\frac 1 2 cos(t)+sin(t)\\ Int.Factor=e^{\int -1 dt}=e^{-t}\\ (e^{-t}y)' = e^{-t}(\frac 1 2 cos(t)+sin(t))\\ e^{-t}y = \int e^{-t}(\frac 1 2 cos(t)+sin(t)) dt\\ =\frac 1 2 \int e^{-t}cos(t)dt+\int e^{-t} sin(t)dt\\ \int e^{-t}cos(t) dt = e^{-t}sin(t)-(-e^{-t})(-cos(t))+\int e^{-t}(-cos(t))dt\\ \int e^{-t}cos(t) dt = \frac 1 2 e^{-t}(sin(t)-cos(t)) \\ \int e^{-t}sin(t) dt = e^{-t}(-cos(t))-(-e^{-t})(-sin(t))+\int e^{-t}(-sin(t))dt\\ \int e^{-t}sin(t) dt = -\frac 1 2 e^{-t}(cos(t)+sin(t))\\ e^{-t}y = \frac 1 4 e^{-t}(sin(t)-cos(t))-\frac 1 2 e^{-t}(cos(t)+sin(t))+C_1\\ y = \frac 1 4 (sin(t)-cos(t))-\frac 1 2(cos(t)+sin(t))+C_1e^t\\ \therefore y = -\frac 3 4 cos(t)-\frac 1 4 sin(t)+C_1e^t \quad \text{same result. good.}\\ y' = C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t) \\

And…


  • Try to use EQ. (1)
    x+y+2x=0x+C1et+34sin(t)14cos(t)+2x=0x+2x=C1et34sin(t)+14cos(t)(D+2)x=C1et34sin(t)+14cos(t)xh:r+2=0,r=2xh=Ee2txpform=Aet+Bcos(t)+Csin(t)xp=AetBsin(t)+Ccos(t)x+2x=C1et34sin(t)+14cos(t)AetBsin(t)+Ccos(t)+2Aet+2Bcos(t)+2Csin(t)=C1et34sin(t)+14cos(t)3Aet(B2C)sin(t)+(2B+C)cos(t)=C1et34sin(t)+14cos(t)3A=C1,B2C=34,2B+C=144B+2C=24,5B=54,B=14,C=1424=14xp=13C1et+14cos(t)14sin(t)x(t)=Ee2t13C1et+14cos(t)14sin(t) \begin{aligned} &x'+y'+2x=0 \\ &x'+C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t)+2x=0\\ &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &(D+2)x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &x_h : r+2=0, r=-2\\ &x_h = E e^{-2t}\\ &x_p form = Ae^{t}+Bcos(t)+Csin(t) \\ &x_p' = Ae^{t}-Bsin(t)+Ccos(t) \\ &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &Ae^{t}-Bsin(t)+Ccos(t)+2Ae^{t}+2Bcos(t)+2Csin(t)\\ &=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &3Ae^{t}-(B-2C)sin(t)+(2B+C)cos(t)=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &3A=-C_1, B-2C=\frac 3 4, 2B+C=\frac 1 4\\ &4B+2C=\frac 2 4, 5B=\frac 5 4, B=\frac 1 4, C=\frac 1 4-\frac 2 4=-\frac 1 4\\ &x_p = -\frac 1 3 C_1e^{t}+\frac{1}{4}cos(t)-\frac 1 {4}sin(t)\\ & \therefore x(t) = Ee^{-2t}-\frac 1 3 C_1e^{t}+\frac{1}{4}cos(t)-\frac 1 {4}sin(t)\\ \end{aligned}
    But… e2te^{-2t} ??? is Not the solution.

Alternative.
x+2x=C1et34sin(t)+14cos(t)Int.Factor=e2dt=e2t(e2tx)=C1e3t34e2tsin(t)+14e2tcos(t)e2tx=C1e3tdt34e2tsin(t)dt+14e2tcos(t)dte2tsin(t)dt=e2t(cos(t))2e2t(sin(t))+4e2t(sin(t))dt5e2tsin(t)dt=e2t(cos(t)+2sin(t))e2tsin(t)dt=15e2t(cos(t)+2sin(t))e2tcos(t)dt=e2t(sin(t))2e2t(cos(t))+4e2t(cos(t))dt5e2tcos(t)dt=e2t(sin(t)+2cos(t))e2tcos(t)dt=15e2t(sin(t)+2cos(t))e3ttdt=13eudu=13eu=13e3te2tx=C1e3tdt34e2tsin(t)dt+14e2tcos(t)dt=C13e3t320e2t(cos(t)+2sin(t))+120e2t(sin(t)+2cos(t))+C2x=C13et320(2sin(t)cos(t))+120(sin(t)+2cos(t))+C2e2tx=C13et520sin(t)+520cos(t)+C2e2tx=C13et14sin(t)+14cos(t)+C2e2te2t found again ?? \begin{aligned} &x'+2x=-C_1e^{t}-\frac 3 4 sin(t)+\frac 1 4 cos(t)\\ &Int.Factor = e^{\int 2 dt}=e^{2t}\\ &(e^{2t}x)' = -C_1e^{3t}-\frac 3 4 e^{2t}sin(t)+\frac 1 4 e^{2t}cos(t)\\ &e^{2t}x = -C_1\int e^3tdt-\frac 3 4\int e^{2t}sin(t)dt+\frac 1 4 \int e^{2t}cos(t)dt\\ &\int e^{2t}sin(t)dt =e^{2t}(-cos(t))-2e^{2t}(-sin(t))+\int 4e^{2t}(-sin(t))dt \\ &5\int e^{2t}sin(t)dt = e^{2t}(-cos(t)+2sin(t))\\ &\int e^{2t}sin(t)dt = \frac 1 5 e^{2t}(-cos(t)+2sin(t)) \\ &\int e^{2t}cos(t)dt =e^{2t}(sin(t))-2e^{2t}(-cos(t))+\int 4e^{2t}(-cos(t))dt \\ &5\int e^{2t}cos(t)dt = e^{2t}(sin(t)+2cos(t))\\ &\int e^{2t}cos(t)dt = \frac 1 5 e^{2t}(sin(t)+2cos(t)) \\ &\int e^{3t}t dt = \frac 1 3 \int e^u du =\frac 1 3 e^{u} = \frac 1 3 e^{3t}\\ & \therefore e^{2t}x = -C_1\int e^3tdt-\frac 3 4\int e^{2t}sin(t)dt+\frac 1 4 \int e^{2t}cos(t)dt\\ &=-\frac {C_1} 3 e^{3t}-\frac 3 {20} e^{2t}(-cos(t)+2sin(t)) +\frac 1 {20} e^{2t}(sin(t)+2cos(t)) + C_2 \\ &x = -\frac {C_1} 3 e^t-\frac 3 {20}(2sin(t)-cos(t))+\frac 1 {20}(sin(t)+2cos(t))+C_2e^{-2t}\\ &x = -\frac {C_1} 3 e^t-\frac 5 {20}sin(t)+\frac 5 {20}cos(t)+C_2e^{-2t}\\ &x = -\frac {C_1} 3 e^t-\frac 1 {4}sin(t)+\frac 1 {4}cos(t)+C_2e^{-2t}\\ &e^{-2t} \text{ found again } ?? &\quad \\ \end{aligned}


  • Try to use EQ. (2)
    x+yxy=sin(t)xx+yy=sin(t)xx+C1et+34sin(t)14cos(t)(34cos(t)14sin(t)+C1et)=sin(t)xx+sin(t)+12cos(t)=sin(t)xx=12cos(t)IntegrationFactor=et(etx)=12etcos(t)etx=12etcos(t)dtetx=12(12et(sin(t)cos(t))+C3)x=14(cos(t)sint(t))+C3et \begin{aligned} &x'+y'-x-y=sin(t)\\ &x'-x+y'-y=sin(t)\\ &x'-x+C_1e^{t}+\frac 3 4 sin(t)-\frac 1 4 cos(t)-(-\frac 3 4 cos(t)-\frac 1 4 sin(t)+C_1e^t) \\ &= sin(t)\\ &x'-x+sin(t)+\frac 1 2 cos(t)=sin(t)\\ &x'-x=-\frac 1 2 cos(t) \\ & IntegrationFactor = e^{-t}\\ &( e^{-t}x)' = -\frac 1 2 e^{-t} cos(t) \\ &e^{-t}x = -\frac 1 2 \int e^{-t} cos(t) dt \\ &e^{-t}x = -\frac 1 2 (\frac 1 2 e^{-t}(sin(t)-cos(t)) +C_3)\\ &x = \frac 1 4 (cos(t) - sint(t))+C_3e^t \end{aligned}
    alternative.
    xx=12cos(t)2x2x=cos(t)1. find xh2x2x=0,(2D2)x=02r2=0,r=1xh=C3et2. find xpxp=Acost+Bsintxp=Asint+Bcost2x2x=cos(t)2(Asint+Bcost)2(Acost+Bsint)=cos(t)(2B2A)cost+(2A2B)sint=cost2B2A=1,2A2B=0,A=B,4B=1,B=1/4,A=1/43. find xx=C3et+14cost14sint \begin{aligned} &x'-x=-\frac 1 2 cos(t) \\ &2x'-2x=-cos(t)\\ &\text {1. find }x_h\\ & 2x'-2x=0 , \quad (2D-2)x=0\\ & 2r-2=0, r=1 \\ & x_h = C_3e^t \\ & \text{2. find }x_p\\ & x_p = Acost+Bsint\\ & x_p' = -Asint+Bcost \\ &2x'-2x=-cos(t)\\ &2(-Asint+Bcost)-2(Acost+Bsint)=-cos(t)\\ &(2B-2A)cost + (-2A-2B)sin t = -cost \\ &2B-2A=-1, -2A-2B=0, A=-B, 4B=-1, \\ &B=-1/4, A=1/4\\ &\text{3. find } x \\ &x = C_3e^t+\frac 1 4 cos t - \frac 1 4 sin t \end{aligned}

Q. {x=yx(0)=3x(0)=1y=xy(0)=1y(0)=1}x''=y \quad x(0)=3 \quad x'(0)=1 \brace y''=x \quad y(0)=1 \quad y'(0)=-1

D2(x)y=0D2(y)x=0D4(x)D2(y)=0D4(x)x=0(D41)(x)=0r41=0(r21)(r2+1)=0r=±1,r=±ix(t)=C1et+C2et+C3cos(t)+C4sin(t)x(t)=C1et+C2etC3sin(t)+C4cos(t)x(t)=C1et+C2etC3cos(t)C4sin(t)x(0)=C1+C2+C3=3x(0)=C1+C2+C4=12C2+C3+C4=4y=D2(x)=C1et+C2etC3cos(t)C4sin(t)y=C1et+C2et+C3sin(t)C4cos(t)y(0)=C1+C2C3=1y(0)=C1+C2C4=12C2C3C4=04C2=4,C2=1C1+C3=2,C4C1=0,C1=C4C1C3=0,C1=C3=1x(t)=et+et+cos(t)+sin(t)y(t)=et+etcos(t)sin(t) D^2(x)-y=0 \\ D^2(y)-x=0 \\ D^4(x)-D^2(y)=0\\ D^4(x)-x=0\\ (D^4-1)(x)=0 \\ r^4-1=0 \\ (r^2-1)(r^2+1)=0 \\ r=\pm1 , \quad r=\pm i\\ x(t) = C_1e^{-t}+C_2e^{t}+C_3cos(t)+C_4sin(t)\\ x'(t) = -C_1e^{-t}+C_2e^{t}-C_3sin(t)+C_4cos(t)\\ x''(t) = C_1e^{-t}+C_2e^{t}-C_3cos(t)-C_4sin(t)\\ x(0) = C_1+C_2+C_3=3\\ x'(0)=-C_1+C_2+C_4=1\\ 2C_2+C_3+C_4=4\\ y = D^2(x) = C_1e^{-t}+C_2e^{t}-C_3cos(t)-C_4sin(t)\\ y' = -C_1e^{-t}+C_2e^{t}+C_3sin(t)-C_4cos(t)\\ y(0) = C_1+C_2-C_3=1 \\ y'(0) = -C_1+C_2-C_4=-1 \\ 2C_2-C_3-C_4=0\\ 4C_2=4, C_2=1\\ C_1+C_3=2, C_4-C_1=0, C_1=C_4\\ C_1-C_3=0, C_1=C_3=1\\ \therefore x(t) = e^{-t}+e^{t}+cos(t)+sin(t)\\ y(t) = e^{-t}+e^{t}-cos(t)-sin(t)

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18
derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05
derivative100 [21-30]  (0) 2019.11.04

+ Recent posts