반응형
derivative_br_21

21. ddx(ysiny=xsinx)\frac{d}{dx}(ysiny = xsinx)

ddx(ysiny=xsinx)=ysiny+ycosyy=sinx+xcosx=y(siny+ycosy)=sinx+xcosxy=sinx+xcosxsiny+ycosy \begin{aligned} &\frac{d}{dx}(ysiny = xsinx)\\ &=y'siny+ycosyy'=sinx+xcosx\\ &=y'(siny+ycosy)=sinx+xcosx\\ &y'=\frac{sinx+xcosx}{siny+ycosy} \end{aligned}


22. ddx(ln(x/y)=exy3)\frac{d}{dx}(ln(x/y) = e^{xy^3})

ddx(ln(x/y)=exy3)=yx(x/y)=exy3(xy3)=yxyxyy2=exy3(y3+x3y2y)y2xyyxy2=y3exy3+3xy2exy3y1xyy=y3exy3+3xy2exy3y1xy3exy3=3xy2exy3y+yy1xy3exy3x=(1+3xy3exy3y)yy=1xy3exy3x(y1+3xy3exy3)y=yxy4exy3x+3x2y3exy3 \begin{aligned} &\frac{d}{dx}(ln(x/y) = e^{xy^3})\\ &=\frac{y}{x}(x/y)'=e^{xy^3}(xy^3)'\\ &=\frac{y}{x}\frac{y-xy'}{y^2}=e^{xy^3}(y^3+x3y^2y')\\ &\frac{y^2-xyy'}{xy^2}=y^3e^{xy^3}+3xy^2e^{xy^3}y'\\ &\frac{1}{x}-\frac{y'}{y}=y^3e^{xy^3}+3xy^2e^{xy^3}y'\\ &\frac{1}{x}-y^3e^{xy^3}=3xy^2e^{xy^3}y'+\frac{y'}{y}\\ &\frac{1-xy^3e^{xy^3}}{x}=(\frac{1+3xy^3e^{xy^3}}{y})y'\\ &y'=\frac{1-xy^3e^{xy^3}}{x}(\frac{y}{1+3xy^3e^{xy^3}})\\ &y'=\frac{y-xy^4e^{xy^3}}{x+3x^2y^3e^{xy^3}}\\ \end{aligned}
Alt.
ddx(ln(x/y)=exy3)ddx(ln(x)ln(y)=exy3)1xyy=exy3(y3+x3y2y)same as upper \begin{aligned} &\frac{d}{dx}(ln(x/y) = e^{xy^3})\\ &\frac{d}{dx}(ln(x)-ln(y) = e^{xy^3})\\ &\frac{1}{x}-\frac{y'}{y}=e^{xy^3}(y^3+x3y^2 y')\\ &\text{same as upper} \end{aligned}


23. ddx(x=sec(y))\frac{d}{dx}(x=sec(y))

ddx(x=sec(y))dx=sec(y)tan(y)dydydx=1sec(y)tan(y)(R.T.angle=y,a=1,h=x,o=x21)dydx=1xx21=(arctan(x)) \begin{aligned} &\frac{d}{dx}(x=sec(y))\\ &dx=sec(y)tan(y)dy\\ &\frac{dy}{dx}=\frac{1}{sec(y)tan(y)}\\ &(R.T. angle=y, a=1,h=x, o=\sqrt{x^2-1})\\ &\frac{dy}{dx}=\frac{1}{x\sqrt{x^2-1}}=(arctan(x))'\\ \end{aligned}


24. ddx((xy)2=sinx+siny)\frac{d}{dx}((x-y)^2 = sinx + siny )

ddx((xy)2=sinx+siny)2(xy)(1y)=cosx+cosyy=2(xy)2(xy)y=cosx+cosyy=2(xy)cosx=cosyy+2(xy)yy(cosy+2(xy))=2(xy)cosxy=2(xy)cosx2(xy)+cosy \begin{aligned} &\frac{d}{dx}((x-y)^2 = sinx + siny )\\ &2(x-y)(1-y')=cosx+cosyy'\\ &=2(x-y)-2(x-y)y'=cosx+cosyy'\\ &=2(x-y)-cosx=cosyy'+2(x-y)y'\\ &y'(cosy+2(x-y))=2(x-y)-cosx\\ &y'=\frac{2(x-y)-cosx}{2(x-y)+cosy}\\ \end{aligned}


25. ddx(xy=yx)\frac{d}{dx}( x^y = y^x)

ddx(xy=yx)ylnx=xlnyylnx+y(1/x)=lny+x(1/y)yy(lnxx(1/y))=lnyy(1/x)y=lnyy(1/x)lnxx(1/y)=xylnyy2xylnxx2 \begin{aligned} &\frac{d}{dx}( x^y = y^x)\\ &y ln x = x ln y \\ &y' lnx + y(1/x) =lny+x(1/y)y' \\ &y'(lnx-x(1/y))=ln y-y(1/x) \\ &y' = \frac{ln y-y(1/x)}{lnx-x(1/y)} \\ &= \frac{xy ln y-y^2}{ xylnx-x^2} \\ \end{aligned}


26. ddx(arctan(x2y)=x+y3)\frac{d}{dx}(arctan(x^2y) = x+y^3)

ddx(arctan(x2y)=x+y3)y=arctanx,x=tany,dx=sec2ydyR.Tangle=y,a=1,o=x,h=sqrt(x2+1)dy/dx=1sec2y=cos2y=11+x2ddx(arctan(x2y)=x+y3)11+x4y2(2xy+x2y)=1+3y2y2xy1+x4y2+x2y1+x4y2=1+3y2y2xy1+x4y21=3y2yx2y1+x4y22xy1x4y21+x4y2=(3y2x21+x4y2)y2xy1x4y21+x4y2=3y2+3x4y4x21+x4y2yy=2xy1x4y23y2+3x4y4x2=x4y22xy+13x4y4+x23y2 \begin{aligned} &\frac{d}{dx}(arctan(x^2y) = x+y^3)\\ &y=arctan x, x=tan y, dx=sec^2ydy\\ &R.T angle=y, a=1, o=x, h=sqrt(x^2+1)\\ &dy/dx = \frac{1}{sec^2y}=cos^2y=\frac{1}{1+x^2} \\ \\ &\frac{d}{dx}(arctan(x^2y) = x+y^3)\\ &\frac{1}{1+x^4y^2}(2xy+x^2y')=1+3y^2y'\\ &\frac{2xy}{1+x^4y^2}+\frac{x^2y'}{1+x^4y^2} =1+3y^2y'\\ &\frac{2xy}{1+x^4y^2}-1= 3y^2y'-\frac{x^2y'}{1+x^4y^2}\\ &\frac{2xy-1-x^4y^2}{1+x^4y^2}= (3y^2-\frac{x^2}{1+x^4y^2})y'\\ &\frac{2xy-1-x^4y^2}{1+x^4y^2}= \frac{3y^2+3x^4y^4-x^2}{1+x^4y^2}y'\\ &y'=\frac{2xy-1-x^4y^2}{3y^2+3x^4y^4-x^2}\\ &=\frac{x^4y^2-2xy+1}{-3x^4y^4+x^2-3y^2}\\ \end{aligned}


27. ddx(x2/(x2y2)=3y)\frac{d}{dx}(x^2/(x^2-y^2) = 3y)

ddx(x2/(x2y2)=3y)ddx(x2=3y(x2y2)=3x2y3y3)2x=6xy+3x2y9y2y2x6xy=y(3x29y2)y=2x6xy3x29y2 \begin{aligned} &\frac{d}{dx}(x^2/(x^2-y^2) = 3y)\\ &\frac{d}{dx}(x^2 = 3y(x^2-y^2)=3x^2y-3y^3)\\ &2x=6xy+3x^2y'-9y^2y'\\ &2x-6xy=y'(3x^2-9y^2)\\ &y'=\frac{2x-6xy}{3x^2-9y^2} \end{aligned}


28. ddx(ex/y=x+y2)\frac{d}{dx}(e^{x/y} = x + y^2)

ddx(ex/y=x+y2)ddx(xy=ln(x+y2))yxyy2=1x+y2(1+2yy)1y1x+y2=xyy2+2yyx+y2y(x+y2)y2=x(x+y2)y+2y3yy=y3y2+xyx2+xy2+2y3=y(x+y2)y2x(x+y2)+2y3=yex/yy2xex/y+2y3 \begin{aligned} &\frac{d}{dx}(e^{x/y} = x + y^2)\\ &\frac{d}{dx}(\frac{x}{y} = ln(x + y^2))\\ &\frac{y-xy'}{y^2} =\frac{1}{x + y^2}(1+2yy')\\ &\frac{1}{y} - \frac{1}{x + y^2}=\frac{xy'}{y^2}+\frac{2yy'}{x + y^2}\\ &y(x+y^2) - y^2=x(x+y^2)y'+2y^3y'\\ &y'=\frac{y^3-y^2+xy}{x^2+xy^2+2y^3}=\frac{y(x+y^2)-y^2}{x(x+y^2)+2y^3}\\ &=\frac{ye^{x/y}-y^2}{xe^{x/y}+2y^3} \end{aligned}


29. ddx((x2+y21)3=y)\frac{d}{dx}((x^2 + y^2 – 1)^3 = y)

ddx((x2+y21)3=y)3(x2+y21)2(2x+2yy)=y3(x2+y21)2(2x)+3(x2+y21)2(2yy)=y6x(x2+y21)2+6y(x2+y21)2y=yy=6x(x2+y21)216y(x2+y21)2 \begin{aligned} &\frac{d}{dx}((x^2 + y^2 – 1)^3 = y)\\ &3(x^2+y^2-1)^2(2x+2yy')=y'\\ &3(x^2+y^2-1)^2(2x)+3(x^2+y^2-1)^2(2yy')=y'\\ &6x(x^2+y^2-1)^2+6y(x^2+y^2-1)^2y'=y'\\ &y'=\frac{6x(x^2+y^2-1)^2}{1-6y(x^2+y^2-1)^2}\\ \end{aligned}


30. d2ydx2(9x2+y2=9)\frac{d^2y}{dx^2} (9x^2 + y^2 = 9)

d2ydx2(9x2+y2=9)ddx(ddx(9x2+y2=9))ddx(9x2+y2=9)18x+2yy=0y=9xyy=9yxyy2=9yx(9xy)y2=9y+9x2/yy2=9y81x2y3=9y2+9x2y3=81y3 \begin{aligned} &\frac{d^2y}{dx^2} (9x^2 + y^2 = 9)\\ &\frac{d}{dx}(\frac{d}{dx} (9x^2 + y^2 = 9) )\\ &\frac{d}{dx} (9x^2 + y^2 = 9) \\ &18x+2yy'=0\\ &y'=-\frac{9x}{y} \\ &y'' = -9\frac{y-xy'}{y^2}=-9\frac{y-x(-9\frac{x}{y})}{y^2}\\ &=-9\frac{y+9x^2/y}{y^2}=-\frac{9}{y}-81\frac{x^2}{y^3}\\ &=-9\frac{y^2+9x^2}{y^3}=-\frac{81}{y^3} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [41-50]  (1) 2019.11.06
derivative100 [31-40]  (0) 2019.11.05
derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
반응형
derivative_br_01

1. ddxax2+bx+c\frac{d}{dx}ax^2+bx+c

ddxax2+bx+c=2ax+b \begin{aligned} &\frac{d}{dx} ax^2+bx+c=2ax+b\\ \end{aligned}

2. ddxsin(x)1+cos(x)\frac{d}{dx}\frac{sin(x)}{1+cos(x)}

ddxsin(x)1+cos(x)=(sinx)(1+cosx)sin(x)(1+cosx)(1+cosx)2=cosx+cos2x+sin2(x)(1+cosx)2==11+cos(x) \begin{aligned} &\frac{d}{dx} \frac{sin(x)}{1+cos(x)}= \frac{(sinx)'(1+cosx)-sin(x)(1+cosx)'}{(1+cosx)^2} \\ &=\frac{cosx+cos^2x+sin^2(x)}{(1+cosx)^2}==\frac{1}{1+cos(x)} \end{aligned}

3. ddx(1+cosx)/sinx\frac{d}{dx} (1+cosx)/sinx

ddx(1+cosx)sinx=(1+cosx)sinx(1+cosx)(sinx)sin2x=sin2xcosxcos2xsin2x=1+cosx1cos2(x)=1+cosxsin2x=11cos(x) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = \frac{(1+cosx)'sinx-(1+cosx)(sinx)'}{sin^2x} \\ &=\frac{-sin^2x-cosx-cos^2x}{sin^2x}=-\frac{1+cosx}{1-cos^2(x)}\\ &=-\frac{1+cos x }{sin^2x}=-\frac{1}{1-cos(x)} \end{aligned}
Alt.
ddx(1+cosx)sinx=(1sinx)+(cosxsinx)=(cscx)+(cotx)=cscxcotxcsc2x=cscx(cotx+cscx) \begin{aligned} &\frac{d}{dx} \frac{(1+cosx)}{sinx} = (\frac{1}{sinx})'+(\frac{cosx}{sinx})' \\ &=(csc x)'+(cot x)' = -csc x cot x-csc^2x\\ &=-cscx(cot x+cscx) \end{aligned}

cscx(cotx+cscx)=1sinx(cosx+1sinx)=1+cosxsin2x -cscx(cot x+cscx) = -\frac{1}{sinx}(\frac{cosx+1}{sin x})\\ =-\frac{1+cosx}{sin^2x}

4. ddxsqrt(3x+1)\frac{d}{dx}sqrt(3x+1)

ddx3x+1=123x+13=323x+1 \begin{aligned} &\frac{d}{dx} \sqrt{3x+1}= \frac{1}{2\sqrt{3x+1}}3=\frac{3}{2\sqrt{3x+1}} \end{aligned}

5. ddxsin3x+sin(x3)\frac{d}{dx} \sin^3 {x}+sin(x^3)

ddxsin3x+sin(x3)=3sin2xcosx+cos(x3)(3x2)=3sin2xcosx+3x2cos(x3) \begin{aligned} &\frac{d}{dx} \sin^3 {x}+sin(x^3)= 3sin^2xcosx+cos(x^3)(3x^2)\\ &=3sin^2xcosx+3x^2cos(x^3) \end{aligned}

6. ddx1/x4\frac{d}{dx} 1/x^4

ddx1x4=(x4)=4x5 \begin{aligned} &\frac{d}{dx} \frac{1}{x^4} = (x^{-4})'=-\frac{4}{x^5}\\ \end{aligned}

7. ddx(1+cotx)3\frac{d}{dx}(1+cotx)^3

ddx(1+cotx)3=3(1+cotx)2(csc2x)=3csc2x(1+cotx)2 \begin{aligned} &\frac{d}{dx} (1+cotx)^3 = 3(1+cotx)^2(-csc^2x)\\ &=--3csc^2x(1+cotx)^2 \end{aligned}

8. ddxx2(2x3+1)10\frac{d}{dx} x^2(2x^3+1)^{10}

ddxx2(2x3+1)10=(x2)(2x3+1)10+(x2)((2x3+1)10)=2x(2x3+1)10+x2(10(2x3+1)9(6x2))=2x(2x3+1)9(2x3+1+30x3)=2x(2x3+1)9(32x3+1) \begin{aligned} &\frac{d}{dx} x^2(2x^3+1)^{10}=(x^2)'(2x^3+1)^{10}+(x^2)((2x^3+1)^{10})'\\ &=2x(2x^3+1)^{10}+x^2(10(2x^3+1)^9(6x^2))\\ &=2x(2x^3+1)^{9}( 2x^3+1+ 30x^3 )\\ &=2x(2x^3+1)^{9}(32x^3+1) \end{aligned}

9. ddxx/(x2+1)2\frac{d}{dx} x/(x^2+1)^2

ddxx(x2+1)2=(x2+1)2x2(x2+1)2x(x2+1)4=(x2+1)(x2+14x2)(x2+1)4=(x2+1)(3x2+1)(x2+1)4=(3x2+1)(x2+1)3 \begin{aligned} &\frac{d}{dx} \frac{x}{(x^2+1)^2}=\frac{(x^2+1)^2-x2(x^2+1)2x}{(x^2+1)^4}\\ &=\frac{(x^2+1)(x^2+1-4x^2)}{(x^2+1)^4} =\frac{(x^2+1)(-3x^2+1)}{(x^2+1)^4}\\ &=\frac{(-3x^2+1)}{(x^2+1)^3} \end{aligned}

10. ddx20/(1+5e2x)\frac{d}{dx} 20/(1+5e^{-2x})

ddx20(1+5e2x)=20(5e2x)(2)(1+5e2x)2=200e2x(1+5e2x)2 \begin{aligned} &\frac{d}{dx} \frac{20}{(1+5e^{-2x})}=\frac{-20(5e^{-2x})(-2)}{(1+5e^{-2x})^2}\\ &=\frac{200e^{-2x}}{(1+5e^{-2x})^2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [21-30]  (0) 2019.11.04
derivative100 [11-20]  (0) 2019.10.31
Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26

+ Recent posts