반응형
calculus_int_ln_gamma

01ln(Γ(x))dx \int_{0}^{1} ln(\Gamma(x))dx


We know this.
Γ(x)=0tx1etdtΓ(x)Γ(1x)=πsin(πx) \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t} dt \\ \Gamma(x) \Gamma(1-x) = \frac {\pi}{sin(\pi x)}
take log.
ln(Γ(x)Γ(1x))=lnπsin(πx)ln(Γ(x))+ln(Γ(1x))=lnπln(sin(πx)) ln(\Gamma(x) \Gamma(1-x)) = ln { \frac {\pi}{sin(\pi x)} }\\ ln(\Gamma(x))+ln(\Gamma(1-x)) = ln \pi - ln (sin(\pi x))
take integral.
ln(Γ(x))+ln(Γ(1x))=lnπln(sin(πx))01ln(Γ(x))dx+01ln(Γ(1x))dx=01lnπdx01ln(sin(πx))dx01ln(Γ(x))dx+01ln(Γ(u))du=01lnπ01ln(sin(πx))201ln(Γ(x))dx=01lnπdx01ln(sin(πx))dx201ln(Γ(x))dx=lnπ01ln(sin(πx))dx \int ln(\Gamma(x))+ \int ln(\Gamma(1-x)) = \int ln \pi - \int ln (sin(\pi x))\\ \int_0^1 ln(\Gamma(x)) dx+\int_0^1 ln(\Gamma(1-x)) dx = \int_0^1 ln \pi dx- \int_0^1 ln (sin(\pi x)) dx \\ \int_0^1 ln(\Gamma(x))dx+\int_0^1 ln(\Gamma(u)) du=\int_0^1 ln \pi - \int_0^1 ln (sin(\pi x))\\ 2\int_0^1 ln(\Gamma(x))dx=\int_0^1 ln \pi dx- \int_0^1 ln (sin(\pi x))dx\\ 2\int_0^1 ln(\Gamma(x))dx=ln\pi - \int_0^1 ln (sin(\pi x))dx
And watch the last part.
01ln(sin(πx))dx(u=πx,du=πdx)=0πln(sin(u))1πdu=1π0πln(sin(u))du \int_0^1 ln (sin(\pi x))dx\\ (u=\pi x , du=\pi dx) \\ =\int_0^{\pi} ln(sin(u)) \frac{1}{\pi} du\\ =\frac{1}{\pi} \int_0^{\pi} ln(sin(u)) du
We know
0π2ln(sin(x))dx=π2ln2 \int_0^{\frac{\pi}{2}}ln(sin(x))dx = -\frac{\pi}{2}ln2
So,
1π0πln(sin(u))du=1π20π2ln(sin(x))dx=1π2(π2ln2)=ln201ln(sin(πx))dx=ln2 \frac{1}{\pi} \int_0^{\pi} ln(sin(u)) du=\frac{1}{\pi} 2 \int_0^{\frac{\pi}{2}}ln(sin(x))dx \\ =\frac{1}{\pi} 2 (-\frac{\pi}{2}ln2) \\ = - ln 2\\ \int_0^1 ln (sin(\pi x))dx=-ln2
So,
201ln(Γ(x))dx=lnπ01ln(sin(πx))dx=lnπ(ln2)=lnπ+ln2 2\int_0^1 ln(\Gamma(x))dx=ln\pi - \int_0^1 ln (sin(\pi x))dx\\ =ln\pi - (-ln2) = ln \pi + ln 2
01ln(Γ(x))dx=lnπ+ln22=ln(2π)2 \therefore \int_0^1 ln(\Gamma(x))dx = \frac {ln \pi + ln 2} {2} = \frac {ln(2\pi)}{2}

Author
crazyj7@gmail.com
Written with StackEdit.

'Math' 카테고리의 다른 글

Integral100 [11-20]  (0) 2019.10.13
Integral100 [1-10]  (2) 2019.10.12
integral ln sin  (0) 2019.08.01
Gaussian integration  (0) 2019.07.26
적분 순서 치환방법 정리  (0) 2019.05.05

+ Recent posts