21. ∫ sin 3 x cos 2 x d x \int \sin^3{x} \cos^2{x}dx ∫ sin 3 x cos 2 x d x
∫ sin 3 x cos 2 x d x = ∫ sin x sin 2 x cos 2 x d x = ∫ sin x ( 1 − cos 2 x ) cos 2 x d x ( u = c o s x , d u = − s i n x d x ) = − ∫ ( 1 − u 2 ) u 2 d u = ∫ u 4 − u 2 d x = 1 5 c o s 5 x − 1 3 c o s 3 x + C
\begin{aligned}
&\int \sin^3{x} \cos^2{x}dx\\
&=\int \sin{x}\sin^2{x}\cos^{2}x dx\\
&=\int \sin{x}(1-\cos^2{x})\cos^{2}x dx\\
&(u=cosx, du=-sinx dx) \\
&=-\int (1-u^2)u^{2} du = \int u^4-u^2dx\\
&=\frac{1}{5}cos^5x-\frac{1}{3}cos^3x+C\\
\end{aligned}
∫ sin 3 x cos 2 x d x = ∫ sin x sin 2 x cos 2 x d x = ∫ sin x ( 1 − cos 2 x ) cos 2 x d x ( u = c o s x , d u = − s i n x d x ) = − ∫ ( 1 − u 2 ) u 2 d u = ∫ u 4 − u 2 d x = 5 1 c o s 5 x − 3 1 c o s 3 x + C
22. ∫ 1 x 2 x 2 + 1 d x \int \frac{1}{x^2\sqrt{x^2+1}} dx ∫ x 2 x 2 + 1 1 d x
∫ 1 x 2 x 2 + 1 d x = ∫ 1 t a n 2 θ s e c θ s e c 2 θ d θ ( x = tan θ , d x = s e c 2 θ d θ ) = ∫ s e c θ c o t 2 θ d θ = ∫ c o s 2 θ c o s θ s i n 2 θ d θ = ∫ c o s θ s i n 2 θ d θ ( t = s i n θ , d t = c o s θ d θ ) = ∫ d t t 2 = − 1 t = − 1 s i n θ = − c s c θ + C = − csc ( arctan x ) + C = − x 2 + 1 x + C
\begin{aligned}
&\int \frac{1}{x^2\sqrt{x^2+1}} dx\\
&=\int \frac{1}{tan^2\theta sec\theta} sec^2\theta d\theta (x=\tan{\theta}, dx=sec^2\theta d\theta) \\
&=\int sec\theta cot^2\theta d\theta =\int \frac{cos^2\theta}{cos\theta sin^2\theta} d\theta \\
&=\int \frac{cos \theta}{sin^2 \theta} d\theta (t=sin\theta, dt=cos\theta d\theta)\\
&=\int \frac{dt}{t^2} = -\frac{1}{t}=-\frac{1}{sin\theta}=-csc\theta+C\\
&=-\csc({\arctan{x}}) + C \\
&=-\frac{\sqrt{x^2+1}}{x} + C \\
\end{aligned}
∫ x 2 x 2 + 1 1 d x = ∫ t a n 2 θ s e c θ 1 s e c 2 θ d θ ( x = tan θ , d x = s e c 2 θ d θ ) = ∫ s e c θ c o t 2 θ d θ = ∫ c o s θ s i n 2 θ c o s 2 θ d θ = ∫ s i n 2 θ c o s θ d θ ( t = s i n θ , d t = c o s θ d θ ) = ∫ t 2 d t = − t 1 = − s i n θ 1 = − c s c θ + C = − csc ( arctan x ) + C = − x x 2 + 1 + C
Alternative
∫ 1 x 2 x 2 + 1 d x = ∫ 1 x 2 x 1 + x − 2 d x = ∫ x − 3 1 + x − 2 d x ( u = 1 + x − 2 , d u = − 2 x − 3 d x ) = ∫ − 1 2 u − 1 / 2 d u = − 1 2 2 u 1 / 2 = − 1 + 1 x 2 + C
\begin{aligned}
&\int \frac{1}{x^2\sqrt{x^2+1}} dx\\
&=\int \frac{1}{x^2 x \sqrt{1+x^{-2}}} dx\\
&=\int \frac{x^{-3}}{\sqrt{1+x^{-2}}} dx (u=1+x^{-2}, du=-2x^{-3}dx)\\
&=\int -\frac{1}{2}u^{-1/2}du = -\frac{1}{2}2u^{1/2}=-\sqrt{1+\frac{1}{x^2}}+C\\
\end{aligned}
∫ x 2 x 2 + 1 1 d x = ∫ x 2 x 1 + x − 2 1 d x = ∫ 1 + x − 2 x − 3 d x ( u = 1 + x − 2 , d u = − 2 x − 3 d x ) = ∫ − 2 1 u − 1 / 2 d u = − 2 1 2 u 1 / 2 = − 1 + x 2 1 + C
23. ∫ sin x sec x tan x d x \int \sin{x}\sec{x}\tan{x} dx ∫ sin x sec x tan x d x
∫ sin x sec x tan x d x = ∫ tan 2 x d x = ∫ s e c 2 x − 1 d x = ∫ 1 − c o s 2 x c o s 2 x d x = ∫ s e c 2 x d x − x = tan x − x + C
\begin{aligned}
&\int \sin{x}\sec{x}\tan{x} dx = \int \tan^2x dx =\int sec^2x -1dx\\
&=\int \frac{1-cos^2x}{cos^2x} dx = \int sec^2x dx-x\\
&=\tan{x}-x+C\\
\end{aligned}
∫ sin x sec x tan x d x = ∫ tan 2 x d x = ∫ s e c 2 x − 1 d x = ∫ c o s 2 x 1 − c o s 2 x d x = ∫ s e c 2 x d x − x = tan x − x + C
24. ∫ s e c 3 ( x ) d x \int sec^3(x)dx ∫ s e c 3 ( x ) d x
∫ s e c 3 ( x ) d x = ∫ s e c ( x ) s e c 2 ( x ) d x = sec x tan x − ∫ sec x tan x tan x d x = sec x tan x − ∫ sec x tan 2 x d x = sec x tan x − ∫ sec x ( s e c 2 x − 1 ) d x = sec x tan x + ∫ s e c x d x − ∫ s e c 3 x d x = sec x tan x + ln ∣ s e c x + t a n x ∣ − ∫ s e c 3 x d x
\begin{aligned}
&\int sec^3(x)dx=\int sec(x)sec^2(x) dx\\
&= \sec x \tan x - \int \sec x \tan x \tan x dx\\
&= \sec x \tan x - \int \sec x \tan^2 x dx\\
&= \sec x \tan x - \int \sec x (sec^2x-1) dx\\
&= \sec x \tan x + \int sec x dx - \int sec^3x dx\\
&= \sec x \tan x + \ln | secx+tanx| - \int sec^3x dx \\
\end{aligned}
∫ s e c 3 ( x ) d x = ∫ s e c ( x ) s e c 2 ( x ) d x = sec x tan x − ∫ sec x tan x tan x d x = sec x tan x − ∫ sec x tan 2 x d x = sec x tan x − ∫ sec x ( s e c 2 x − 1 ) d x = sec x tan x + ∫ s e c x d x − ∫ s e c 3 x d x = sec x tan x + ln ∣ s e c x + t a n x ∣ − ∫ s e c 3 x d x
2 ∫ s e c 3 ( x ) d x = sec x tan x + ln ∣ s e c x + t a n x ∣ ∴ ∫ s e c 3 ( x ) d x = 1 2 ( sec x tan x + ln ∣ s e c x + t a n x ∣ ) + C
\begin{aligned}
&2\int sec^3(x)dx=\sec x \tan x +\ln | secx+tanx| \\
&\therefore \int sec^3(x)dx=\frac{1}{2} (\sec x \tan x +\ln | secx+tanx|)+C \\
\end{aligned}
2 ∫ s e c 3 ( x ) d x = sec x tan x + ln ∣ s e c x + t a n x ∣ ∴ ∫ s e c 3 ( x ) d x = 2 1 ( sec x tan x + ln ∣ s e c x + t a n x ∣ ) + C
25. ∫ 1 / ( x ∗ s q r t ( 9 x 2 − 1 ) ) d x \int 1/(x*sqrt(9x^2-1)) dx ∫ 1 / ( x ∗ s q r t ( 9 x 2 − 1 ) ) d x
∫ 1 x 9 x 2 − 1 d x ( 3 x = sec y , 3 d x = sec y tan y d y ) = ∫ 3 sec y tan y sec y tan y 3 d y = y = sec − 1 3 x + C
\begin{aligned}
&\int \frac{1}{x\sqrt{9x^2-1}} dx \\
&(3x=\sec{y}, 3dx=\sec y \tan y dy)\\
&=\int \frac{3}{\sec{y} \tan{y} } \frac{\sec y \tan y }{3} dy \\
&= y =\sec^{-1} 3x +C \\
\end{aligned}
∫ x 9 x 2 − 1 1 d x ( 3 x = sec y , 3 d x = sec y tan y d y ) = ∫ sec y tan y 3 3 sec y tan y d y = y = sec − 1 3 x + C
26. ∫ c o s ( s q r t ( x ) ) d x \int cos(sqrt(x)) dx ∫ c o s ( s q r t ( x ) ) d x
∫ cos ( x ) d x ( u = x , d u = 1 2 x d x ) = ∫ cos u 2 x d u = 2 ∫ u cos u d u = 2 ( u s i n u − ( − c o s u ) ) = 2 u s i n u + 2 c o s u + C = 2 x sin x + 2 cos x + C
\begin{aligned}
&\int \cos ({\sqrt{x}}) dx \\
&(u=\sqrt{x}, du=\frac{1}{2\sqrt{x}}dx )\\
&= \int \cos {u} 2 \sqrt{x} du\\
&= 2\int u\cos {u} du = 2( u sin u - (-cos u) ) \\
&= 2u sin u +2 cos u +C\\
&=2\sqrt{x}\sin{\sqrt{x}} + 2 \cos{\sqrt{x}} + C \\
\end{aligned}
∫ cos ( x ) d x ( u = x , d u = 2 x 1 d x ) = ∫ cos u 2 x d u = 2 ∫ u cos u d u = 2 ( u s i n u − ( − c o s u ) ) = 2 u s i n u + 2 c o s u + C = 2 x sin x + 2 cos x + C
27. ∫ cosec x d x \int \cosec{x}dx ∫ cosec x d x
∫ cosec x d x = ∫ cosec x ( c o s e c x + c o t x ) ( c o s e c x + c o t x ) d x ( u = c o s e c x + c o t x , d u = ( − cosec x cot x − cosec 2 x ) d x ) = − ∫ 1 u d u = − ln ∣ cosec x + cot x ∣ + C
\begin{aligned}
&\int \cosec{x} dx \\
&=\int \frac{\cosec{x}(cosec{x}+cot{x}) }{ (cosec{x}+cot{x}) } dx \\
&( u = cosec{x}+cot{x} , du = (-\cosec{x}\cot{x}-\cosec^2{x}) dx )\\
&=-\int \frac{1}{u} du \\
&=-\ln|{\cosec{x}+\cot{x}}| + C \\
\end{aligned}
∫ cosec x d x = ∫ ( c o s e c x + c o t x ) cosec x ( c o s e c x + c o t x ) d x ( u = c o s e c x + c o t x , d u = ( − cosec x cot x − cosec 2 x ) d x ) = − ∫ u 1 d u = − ln ∣ cosec x + cot x ∣ + C
28. ∫ s q r t ( x 2 + 4 x + 13 ) d x \int sqrt(x^2+4x+13) dx ∫ s q r t ( x 2 + 4 x + 1 3 ) d x
∫ x 2 + 4 x + 13 d x = ∫ ( x + 2 ) 2 + 3 2 d x ( u = x + 2 3 , 3 d u = d x ) = 3 ∫ 3 2 u 2 + 3 2 d u = 9 ∫ u 2 + 1 d u ( u = t a n y , d u = s e c 2 y d y ) = 9 ∫ sec y sec 2 y d y = 9 ∫ s e c 3 y d y = 9 [ s e c ( y ) t a n ( y ) − ∫ s e c ( y ) t a n ( y ) t a n ( u ) d y ] = 9 s e c ( y ) t a n ( y ) − 9 ∫ s e c ( y ) ( s e c 2 y − 1 ) d y = 9 s e c ( y ) t a n ( y ) − 9 ∫ s e c 3 ( y ) d y + 9 ∫ s e c y d y 18 ∫ s e c 3 ( y ) d y = 9 s e c ( y ) t a n ( y ) + 9 ln ∣ s e c ( y ) + t a n ( y ) ∣ 9 ∫ s e c 3 ( y ) d y = 9 2 ( s e c ( y ) t a n ( y ) + ln ∣ s e c ( y ) + t a n ( y ) ∣ ) = 9 2 s e c ( y ) t a n ( y ) + 9 2 ln ∣ s e c ( y ) + t a n ( y ) ∣ ( t a n y = x + 2 3 , a n g l e = y , h = x 2 + 4 x + 13 , a d j = 3 , o p p o s i t e = x + 2 ) = 9 2 x 2 + 4 x + 13 3 x + 2 3 + 9 2 ln ∣ x 2 + 4 x + 13 3 + x + 2 3 ∣ = ( x + 2 ) x 2 + 4 x + 13 2 + 9 2 ln ∣ x + 2 + x 2 + 4 x + 13 3 ∣ + C = ( x + 2 ) x 2 + 4 x + 13 2 + 9 2 ln ∣ x + 2 + x 2 + 4 x + 13 ∣ + C 2
\begin{aligned}
&\int \sqrt{x^2+4x+13} dx \\
&=\int \sqrt{(x+2)^2+3^2} dx \\
& (u=\frac{x+2}{3} , 3 du = dx) \\
&=3\int \sqrt{3^2u^2+3^2} du \\
&=9\int \sqrt{u^2+1} du \\
&(u=tan {y}, du=sec^2ydy)\\
&=9\int \sec{y} \sec^2{y} dy = 9\int sec^3y dy \\
&=9\left[sec(y)tan(y)-\int sec(y)tan(y)tan(u) dy\right] \\
&=9sec(y)tan(y)-9\int sec(y)(sec^2y-1) dy \\
&=9sec(y)tan(y)-9\int sec^3(y)dy+9\int sec y dy \\
&18\int sec^3(y)dy = 9sec(y)tan(y)+9\ln|sec(y)+tan(y)|\\
&9\int sec^3(y)dy = \frac{9}{2}(sec(y)tan(y)+\ln|sec(y)+tan(y)|)\\
&= \frac{9}{2}sec(y)tan(y)+\frac{9}{2}\ln|sec(y)+tan(y)|\\
&(tan{y}=\frac{x+2}{3}, angle=y, h=\sqrt{x^2+4x+13} , adj=3, opposite=x+2)\\
&= \frac{9}{2}\frac{\sqrt{x^2+4x+13}}{3}\frac{x+2}{3}+\frac{9}{2}\ln{|\frac{\sqrt{x^2+4x+13}}{3}+\frac{x+2}{3}|} \\
&=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|\frac{x+2+\sqrt{x^2+4x+13}}{3}|}+C\\
&=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|x+2+\sqrt{x^2+4x+13}|}+C_2\\
\end{aligned}\\
∫ x 2 + 4 x + 1 3 d x = ∫ ( x + 2 ) 2 + 3 2 d x ( u = 3 x + 2 , 3 d u = d x ) = 3 ∫ 3 2 u 2 + 3 2 d u = 9 ∫ u 2 + 1 d u ( u = t a n y , d u = s e c 2 y d y ) = 9 ∫ sec y sec 2 y d y = 9 ∫ s e c 3 y d y = 9 [ s e c ( y ) t a n ( y ) − ∫ s e c ( y ) t a n ( y ) t a n ( u ) d y ] = 9 s e c ( y ) t a n ( y ) − 9 ∫ s e c ( y ) ( s e c 2 y − 1 ) d y = 9 s e c ( y ) t a n ( y ) − 9 ∫ s e c 3 ( y ) d y + 9 ∫ s e c y d y 1 8 ∫ s e c 3 ( y ) d y = 9 s e c ( y ) t a n ( y ) + 9 ln ∣ s e c ( y ) + t a n ( y ) ∣ 9 ∫ s e c 3 ( y ) d y = 2 9 ( s e c ( y ) t a n ( y ) + ln ∣ s e c ( y ) + t a n ( y ) ∣ ) = 2 9 s e c ( y ) t a n ( y ) + 2 9 ln ∣ s e c ( y ) + t a n ( y ) ∣ ( t a n y = 3 x + 2 , a n g l e = y , h = x 2 + 4 x + 1 3 , a d j = 3 , o p p o s i t e = x + 2 ) = 2 9 3 x 2 + 4 x + 1 3 3 x + 2 + 2 9 ln ∣ 3 x 2 + 4 x + 1 3 + 3 x + 2 ∣ = 2 ( x + 2 ) x 2 + 4 x + 1 3 + 2 9 ln ∣ 3 x + 2 + x 2 + 4 x + 1 3 ∣ + C = 2 ( x + 2 ) x 2 + 4 x + 1 3 + 2 9 ln ∣ x + 2 + x 2 + 4 x + 1 3 ∣ + C 2
29. ∫ e 2 x ∗ c o s x d x \int e^{2x}*cosx dx ∫ e 2 x ∗ c o s x d x
∫ e 2 x cos x d x = e 2 x s i n x − ( 2 e 2 x ) ( − c o s x ) + ∫ ( 4 e 2 x ) ( − c o s x ) d x = e 2 x s i n x + 2 e 2 x c o s x − 4 ∫ e 2 x c o s x d x 5 ∫ e 2 x cos x d x = e 2 x s i n x + 2 e 2 x c o s x ∫ e 2 x cos x d x = 1 5 e 2 x s i n x + 2 5 e 2 x c o s x + C
\begin{aligned}
&\int e^{2x} \cos{x} dx \\
&=e^{2x} sin{x}-(2e^{2x})(-cos{x})+\int (4e^{2x})(-cos{x}) dx \\
&=e^{2x}sin{x}+2e^{2x}cos{x}-4\int e^{2x}cos{x}dx\\
&5\int e^{2x}\cos{x} dx= e^{2x}sin{x}+2e^{2x}cos{x} \\
&\int e^{2x} \cos{x} dx =\frac{1}{5}e^{2x}sin{x}+ \frac{2}{5}e^{2x}cos{x}+C\\
\end{aligned}
∫ e 2 x cos x d x = e 2 x s i n x − ( 2 e 2 x ) ( − c o s x ) + ∫ ( 4 e 2 x ) ( − c o s x ) d x = e 2 x s i n x + 2 e 2 x c o s x − 4 ∫ e 2 x c o s x d x 5 ∫ e 2 x cos x d x = e 2 x s i n x + 2 e 2 x c o s x ∫ e 2 x cos x d x = 5 1 e 2 x s i n x + 5 2 e 2 x c o s x + C
30. ∫ 3 5 ( x − 3 ) 9 d x \int_3^5 (x-3)^9 dx ∫ 3 5 ( x − 3 ) 9 d x
∫ 3 5 ( x − 3 ) 9 d x ( u = x − 3 ) = ∫ 0 2 u 9 d u = [ u 10 10 ] 0 2 = 102.4
\begin{aligned}
&\int_3^5 (x-3)^9 dx (u=x-3)\\
&=\int_0^2 u^9 du =\bigg[ \frac{u^{10}}{10} \bigg ]_0^2 \\
&=102.4
\end{aligned}
∫ 3 5 ( x − 3 ) 9 d x ( u = x − 3 ) = ∫ 0 2 u 9 d u = [ 1 0 u 1 0 ] 0 2 = 1 0 2 . 4
Author: crazyj7@gmail.com