반응형
derivative_br_71

71. ddxarctan(2x+3)\frac{d}{dx}arctan(2x+3)

ddxarctan(2x+3)=11+(2x+3)2(2x+3)=24x2+12x+10=12x2+6x+5 \begin{aligned} &\frac{d}{dx}arctan(2x+3)\\ &=\frac{1}{1+(2x+3)^2}(2x+3)'\\ &=\frac{2}{4x^2+12x+10}=\frac{1}{2x^2+6x+5} \end{aligned}


72. ddxcot4(2x)\frac{d}{dx}cot^4(2x)

ddxcot4(2x)=4cot3(2x)(cot(2x))=4cot3(2x)(csc2(2x))(2x)=8cot3(2x)csc2(2x) \begin{aligned} &\frac{d}{dx}cot^4(2x)\\ &=4cot^3(2x)(cot(2x))'=4cot^3(2x)(-csc^2(2x))(2x)'\\ &=-8cot^3(2x)csc^2(2x) \end{aligned}


73. ddxx21+1x\frac{d}{dx}\frac{x^2}{1+\frac{1}{x}}

ddxx21+1x=ddxx2x+1x=ddxx3x+1=3x2(x+1)x3(x+1)2=2x3+3x2(x+1)2 \begin{aligned} &\frac{d}{dx} \frac{x^2}{1+\frac{1}{x}}=\frac{d}{dx} \frac{x^2}{\frac{x+1}{x}}=\frac{d}{dx} \frac{x^3}{x+1}\\ &=\frac{3x^2(x+1)-x^3}{(x+1)^2}=\frac{2x^3+3x^2}{(x+1)^2} \end{aligned}


74. ddxex/(1+x2)\frac{d}{dx}e^{x/(1+x^2)}

ddxex1+x2=ex1+x2(x1+x2)=ex1+x2(1+x2)x(2x)(1+x2)2=ex1+x21x2(1+x2)2 \begin{aligned} &\frac{d}{dx}e^{\frac{x}{1+x^2}}=e^{\frac{x}{1+x^2}} (\frac{x}{1+x^2})'\\ &=e^{\frac{x}{1+x^2}} \frac{(1+x^2)-x(2x)}{(1+x^2)^2}\\ &=e^{\frac{x}{1+x^2}} \frac{1-x^2}{(1+x^2)^2}\\ \end{aligned}


75. ddx(arcsinx)3\frac{d}{dx}(arcsinx)^3

ddx(arcsinx)3=3(arcsinx)211x2=3(sin1x)21x2 \begin{aligned} &\frac{d}{dx}(arcsinx)^3=3(arcsinx)^2\frac{1}{\sqrt{1-x^2}}\\ &=\frac{3(sin^{-1}x)^2}{\sqrt{1-x^2}} \end{aligned}


76. ddx12sec2(x)ln(secx)\frac{d}{dx}\frac{1}{2} sec^2(x) – ln(secx)

ddx12sec2(x)ln(secx)=sec(x)sec(x)tan(x)1sec(x)sec(x)tan(x)=sec2(x)tan(x)tan(x)=(sec2x1)tanx=tan3x \begin{aligned} &\frac{d}{dx}\frac{1}{2} sec^2(x) – ln(secx)\\ &=sec(x)sec(x)tan(x)-\frac{1}{sec(x)}sec(x)tan(x)\\ &=sec^2(x)tan(x)-tan(x)=(sec^2x-1)tanx\\ &=tan^3x \end{aligned}


77. ddxln(ln(lnx)))\frac{d}{dx}ln(ln(lnx)))

ddxln(ln(lnx)))=1ln(ln(x))(ln(ln(x)))=1ln(ln(x))1ln(x)(ln(x))=1xln(x)ln(ln(x)) \begin{aligned} &\frac{d}{dx}ln(ln(lnx)))\\ &=\frac{1}{ln(ln(x))}(ln(ln(x)))'=\frac{1}{ln(ln(x))} \frac{1}{ln(x)}(ln(x))'\\ &=\frac{1}{xln(x)ln(ln(x))} \end{aligned}


78. ddxπ3\frac{d}{dx}\pi^3

ddxπ3=0 \begin{aligned} &\frac{d}{dx}\pi^3=0\\ \end{aligned}


79. ddxln[x+1+x2]\frac{d}{dx}ln[x+\sqrt{1+x^2}]

ddxln[x+1+x2]=1x+1+x2(1+2x21+x2)=1x+1+x21+x2+x1+x2=11+x2 \begin{aligned} &\frac{d}{dx}ln[x+\sqrt{1+x^2}]\\ &=\frac{1}{x+\sqrt{1+x^2}}(1+\frac{2x}{2\sqrt{1+x^2}})\\ &=\frac{1}{x+\sqrt{1+x^2}} \frac{\sqrt{1+x^2}+x}{\sqrt{1+x^2}}\\ &=\frac{1}{\sqrt{1+x^2}} \end{aligned}


80. ddxarcsinh(x)\frac{d}{dx}arcsinh(x)

ddxarcsinh(x)=11+x2y=arcsinh(x),x=sinh(y)=eyey22x=eyey2dx=eydy+eydy=dy(ey+ey)dydx=2ey+ey=1coshy(cosh2xsinh2x=1,coshx=1+sinh2x)1coshy=11+sinh2y=11+(eyey2)2=11+(2x2)2=11+x2Alt.dydx=2ey+eyx2=e2y+e2y24=e2y+e2y+241x2+1=(ey+ey2)2dydx=11+x2 \begin{aligned} &\frac{d}{dx}arcsinh(x)\\ &=\frac{1}{\sqrt{1+x^2}}\\ & y=arcsinh(x), x=sinh(y)=\frac{e^y-e^{-y}}{2}\\ & 2x=e^y-e^{-y} \\ & 2dx = e^ydy+e^{-y}dy=dy(e^y+e^{-y})\\ & \frac{dy}{dx}=\frac{2}{e^y+e^{-y}}=\frac{1}{coshy}\\ &(cosh^2x-sinh^2x = 1, coshx=\sqrt{1+sinh^2x})\\ &\frac{1}{coshy}=\frac{1}{\sqrt{1+sinh^2y}}=\frac{1}{\sqrt{1+(\frac{e^y-e^{-y}}{2})^2}}\\ &=\frac{1}{\sqrt{1+(\frac{2x}{2})^2}}=\frac{1}{\sqrt{1+x^2}}\\ &\\ & Alt.\\ & \frac{dy}{dx}=\frac{2}{e^y+e^{-y}}\\ & x^2=\frac{e^{2y}+e^{-2y}-2}{4}=\frac{e^{2y}+e^{-2y}+2}{4}-1\\ & x^2+1 = (\frac{e^y+e^{-y}}{2})^2\\ & \frac{dy}{dx}=\frac{1}{\sqrt{1+x^2}} \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Derivative100 [91-100]  (0) 2019.12.12
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18
D operator  (0) 2019.11.07

+ Recent posts