반응형
derivative_br_81

81. ddxexsinhx\frac{d}{dx}e^x sinhx

ddxexsinhx=exsinhx+excoshx=ex(sinhx+coshx)=ex(2ex2)=e2x \begin{aligned} &\frac{d}{dx}e^x sinhx\\ &=e^xsinhx+e^xcoshx=e^x(sinhx+coshx)\\ &=e^x(\frac{2e^x}{2})=e^{2x} \end{aligned}


82. ddxsech(1x)\frac{d}{dx}sech(\frac{1}{x})

ddxsech(1x)sech(x)=1/cosh(x),D(sech(x))=sinh(x)/cosh2(x)=sech(x)tanh(x)ddxsech(1x)=sinh(1/x)/cosh2(1/x)(1/x2)=sinh(1/x)x2cosh2(1/x)=sech(1x)tanh(1x)x2 \begin{aligned} &\frac{d}{dx}sech(\frac{1}{x})\\ & sech (x)=1/cosh(x), D(sech(x))=-sinh(x)/cosh^2(x)\\ &=-sech(x)tanh(x)\\ &\frac{d}{dx}sech(\frac{1}{x})=-sinh(1/x)/cosh^2(1/x)(-1/x^2)\\ &=\frac{sinh(1/x)}{x^2cosh^2(1/x)}=\frac{sech(\frac{1}{x})tanh(\frac{1}{x})}{x^2}\\ \end{aligned}


83. ddxcosh(lnx))\frac{d}{dx}cosh(lnx))

ddxcosh(lnx)=sinh(lnx)x=elnxelnx2x=x(1/x)2x=x212x2 \begin{aligned} &\frac{d}{dx}cosh(lnx)=\frac{sinh(lnx)}{x}=\frac{e^{lnx}-e^{-lnx}}{2x}\\ &=\frac{x-(1/x)}{2x}=\frac{x^2-1}{2x^2}\\ \end{aligned}


84. ddxln(coshx)\frac{d}{dx}ln(coshx)

ddxln(coshx)=sinhxcoshx=tanh(x) \begin{aligned} &\frac{d}{dx}ln(coshx)=\frac{sinhx}{coshx}=tanh(x)\\ \end{aligned}


85. ddxsinhx1+coshx\frac{d}{dx}\frac{sinhx}{1+coshx}

ddxsinhx1+coshx=coshx(1+coshx)sinhxsinhx1+cosh2x+2cosh(x)=coshx+cosh2xsinh2x(1+coshx)2=1+coshx(1+coshx)2=11+coshx \begin{aligned} &\frac{d}{dx}\frac{sinhx}{1+coshx}=\frac{coshx(1+coshx)-sinhxsinhx}{1+cosh^2x+2cosh(x)}\\ &=\frac{coshx+cosh^2x-sinh^2x}{(1+coshx)^2}=\frac{1+coshx}{(1+coshx)^2}\\ &=\frac{1}{1+coshx} \end{aligned}


86. ddxarctanh(cosx)\frac{d}{dx}arctanh(cosx)

ddxarctanh(cosx)D(arctanh(x))=11x2y=arctanh(x),x=tanh(y),dx=sech2(y)dydy/dx=1/sech2(y)=cosh2(y)=1(1/cosh2(y))=1(cosh2(y)sinh2(y))/cosh2(y)=11tanh2(y)=11x2ddxarctanh(cosx)=sinx1cos2x=sin(x)sin2(x)=csc(x) \begin{aligned} &\frac{d}{dx}arctanh(cosx)\\ &D(arctanh(x)) = \frac{1}{1-x^2}\\ &y=arctanh(x), x=tanh(y), dx=sech^2(y)dy\\ &dy/dx = 1/sech^2(y)=cosh^2(y)=\frac{1}{(1/cosh^2(y))}\\ &=\frac{1}{( cosh^2(y)-sinh^2(y))/cosh^2(y)}=\frac{1}{1-tanh^2(y)}\\ &=\frac{1}{1-x^2}\\ &\frac{d}{dx}arctanh(cosx)=-\frac{sinx}{1-cos^2x}\\ &=-\frac{sin(x)}{sin^2(x)}=-csc(x)\\ \end{aligned}


87. ddx(x)(arctanhx)+ln((1x2))\frac{d}{dx}(x)(arctanhx)+ln(\sqrt{(1-x^2}))

ddx(x)(arctanhx)+ln(1x2)=arctanh(x)+x11x2+11x22x21x2=arctanh(x)+x1x2x1x2=arctanh(x) \begin{aligned} &\frac{d}{dx}(x)(arctanhx)+ln(\sqrt{1-x^2})\\ &=arctanh(x)+x\frac{1}{1-x^2}+\frac{1}{\sqrt{1-x^2}}\frac{-2x}{2\sqrt{1-x^2}}\\ &=arctanh(x)+\frac{x}{1-x^2}-\frac{x}{1-x^2}\\ &=arctanh(x) \end{aligned}


88. ddxarcsinh(tanx)\frac{d}{dx}arcsinh(tanx)

ddxarcsinh(tanx)=11+tan2xsec2x=sec2xsecx=sec(x) \begin{aligned} &\frac{d}{dx}arcsinh(tanx)\\ &=\frac{1}{\sqrt{1+tan^2x}}sec^2x=\frac{sec^2x}{sec x}\\ &=sec(x) & \end{aligned}


89. ddxarcsin(tanhx)\frac{d}{dx}arcsin(tanhx)

ddxarcsin(tanhx)=11tanh2xsech2x1tanh2x=cosh2xsinh2xcosh2x=sech2x=sech2xsech2x=sech(x) \begin{aligned} &\frac{d}{dx}arcsin(tanhx)\\ &=\frac{1}{\sqrt{1-tanh^2x}} sech^2x\\ &1-tanh^2x = \frac{cosh^2x-sinh^2x}{cosh^2x}=sech^2x\\ &=\frac{sech^2x}{\sqrt {sech^2x} }=sech(x) \end{aligned}


90. ddxarctanhx1x2\frac{d}{dx} \frac{arctanhx}{1-x^2}

ddxarctanhx1x2=11x2(1x2)arctanh(x)(2x)(1x2)2=1+2xarctanh(x)(1x2)2 \begin{aligned} &\frac{d}{dx} \frac{arctanhx}{1-x^2}\\ &=\frac{\frac{1}{1-x^2}(1-x^2)-arctanh(x)(-2x)}{(1-x^2)^2} \\ &=\frac{1+2x arctanh(x)}{(1-x^2)^2} \\ \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #1  (1) 2020.08.27
Derivative100 [91-100]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19
derivatie100 [51-60]  (0) 2019.11.18

+ Recent posts