91. dxdx3,definition
dxdx3=h→0limh(x+h)3−x3=h3hx2+3h2x+h3=h→0lim3x2+3hx+h2=3x2
92. dxd3x+1,def.
dxd3x+1=h→0limh3(x+h)+1−3x+1=h→0limh(3x+3h+1+3x+1)(3x+3h+1)−(3x+1)=h→0lim(3x+3h+1+3x+1)3=23x+13
93. dxd2x+51,def.
dxd2x+51=h→0limh2(x+h)+51−2x+51=h(2x+2h+5)(2x+5)−2h=h→0lim−(2x+2h+5)(2x+5)2=−(2x+5)22
94. dxdx21,def.
dxdx21=h→0limh(x+h)21−x21=hx2(x+h)2−2xh−h2=x2(x+h)2−2x−h=x4−2x=−x32
95. dxdsinx,def.
dxdsinx=h→0limhsin(x+h)−sin(x)=h→0limhsin(x)cos(h)+cos(x)sin(h)−sin(x)=h→0limhsinx(cos(h)−1)+cos(x)hsin(h)cos(h)=1−2!h2+4!h4−...h→0limhcos(h)−1=hc+h3c+..=O(h)=0sin(h)=h−3!h3+...h→0limhsin(h)=1−O(h2)=1∴=sin(x)0+cos(x)1=cos(x)
96. dxdsecx,def.
dxdsec(x)=h→0limhsec(x+h)−sec(x)=h→0limh1/cos(x+h)−1/cos(x)=cos(x+h)cos(x)hcos(x)−cos(x+h)=(cos(x)cos(h)−sin(x)sin(h))cos(x)hcos(x)−cos(x)cos(h)+sin(x)sin(h)=h(cos(x)cos(h)−sin(x)sin(h))1−cos(h)+tan(x)sin(h)=limcos(x)cos(h)−sin(x)sin(h)1(limh1−cos(h)+limhtan(x)sin(h))=cos(x)1(0+tan(x))=sec(x)tan(x)
97. dxdarcsinx,def.
dxdarcsinx=h→0limharcsin(x+h)−arcsin(x)
fail
dxdarcsinx=h→0limharcsin(x+h)−arcsin(x)sin(a−b)=sinacosb−sinbcosaarcsinsin(a−b)=arcsin(sinacosb−sinbcosa)a−b=arcsin(sinacosb−sinbcosa)a=arcsin(x+h),b=arcsin(x)arcsin(x+h)−arcsin(x)=arcsin(sin(arcsin(x+h))cos(arcsin(x))−sin(arcsin(x))cos(arcsin(x+h)))=arcsin((x+h)cos(arcsin(x))−xcos(arcsin(x+h)))(cos(x)=1−sin2(x))We know,x→0limxsinx=1,x→0limsin(x)=x→0limxSo,x→0limsin−1(x)=x→0limxdxdarcsinx=h→0limharcsin(x+h)−arcsin(x)=h→0limharcsin((x+h)1−x2−x1−(x+h)2)=h→0limh(x+h)1−x2−x1−(x+h)2=h→0limh((x+h)1−x2+x1−(x+h)2)(x+h)2(1−x2)−x2(1−(x+h)2)Numerator=(x+h)2−x2(x+h)2−x2+x2(x+h)2Numerator=(x+h)2−x2=2xh+h2=h→0lim(x+h)1−x2+x1−(x+h)22x+h=x1−x2+x1−x22x=2x1−x22x=1−x21=arcsin((x+h)1−x2−x1−(x+h)2)
98. dxdarctanx,def.
Try like upper case, lim tan(x)/x = 1, atan(x)/x=1
dxdarctan(x)=h→0limharctan(x+h)−arctan(x)tan(a−b)=1+tan(a)tan(b)tan(a)−tan(b)a−b=arctan(1+tan(a)tan(b)tan(a)−tan(b))Numerator=arctan(x+h)−arctan(x)N=arctan(1+tan(arctan(x+h))tan(arctan(x))tan(arctan(x+h))−tan(arctan(x)))=arctan(1+(x+h)xx+h−x)=artan(1+x2+hxh)So,dxdarctan(x)=h→0limharctan(x+h)−arctan(x)=h→0limhartan(1+x2+hxh)=h→0lim1+x2+hx1=1+x21
99. dxdf(x)g(x),def.
dxdf(x)g(x)=h→0limhf(x+h)g(x+h)−f(x)g(x)=h→0limhf(x+h)g(x+h)−f(x)g(x)−g(x+h)f(x)+g(x+h)f(x)=h→0limhg(x+h)(f(x+h)−f(x))+f(x)(g(x+h)−g(x))=h→0limg(x+h)hf(x+h)−f(x)+f(x)hg(x+h)−g(x)=g(x)f′(x)+f(x)g′(x)=f′(x)g(x)+f(x)g′(x)
100. dxdg(x)f(x),def.
dxdg(x)f(x)=h→0limhg(x+h)f(x+h)−g(x)f(x)=hg(x)g(x+h)f(x+h)g(x)−f(x)g(x+h)=hg(x)g(x+h)f(x+h)g(x)−f(x)g(x+h)−g(x)f(x)+g(x)f(x)=hg(x)g(x+h)g(x)(f(x+h)−f(x))−f(x)(g(x+h)−g(x))=g(x)2g(x)f′(x)−f(x)g′(x)
101. dxdxxx
First,dxdxxy=xx,lny=xlnx,(1/y)y′=lnx+x(1/x)y′=ylnx+y=xxlnx+xx
Second,
dxdxxxy=xxxlny=xxln(x)y1y′=(xxlnx+xx)ln(x)+xxx1=xx((lnx)2+ln(x)+x1)y′=xxxxx((lnx)2+ln(x)+x1)
The END
Author: crazyj7@gmail.com