반응형
derivative_br_91

91. ddxx3,definition\frac{d}{dx}x^3, definition

ddxx3=limh0(x+h)3x3h=3hx2+3h2x+h3h=limh03x2+3hx+h2=3x2 \begin{aligned} &\frac{d}{dx}x^3\\ &=\lim_{h\to0}\frac{(x+h)^3-x^3}{h}=\frac{3hx^2+3h^2x+h^3}{h}\\ &=\lim_{h\to0}3x^2+3hx+h^2=3x^2 \end{aligned}


92. ddx3x+1,def.\frac{d}{dx} \sqrt{3x+1}, def.

ddx3x+1=limh03(x+h)+13x+1h=limh0(3x+3h+1)(3x+1)h(3x+3h+1+3x+1)=limh03(3x+3h+1+3x+1)=323x+1 \begin{aligned} &\frac{d}{dx} \sqrt{3x+1}\\ &=\lim_{h\to0} \frac{\sqrt{3(x+h)+1}-\sqrt{3x+1}}{h}\\ &=\lim_{h\to0} \frac{(3x+3h+1)-(3x+1)}{h(\sqrt{3x+3h+1}+\sqrt{3x+1})}\\ &=\lim_{h\to0}\frac{3}{(\sqrt{3x+3h+1}+\sqrt{3x+1})}\\ &=\frac{3}{2\sqrt{3x+1}} \end{aligned}


93. ddx12x+5,def.\frac{d}{dx} \frac{1}{2x+5}, def.

ddx12x+5=limh012(x+h)+512x+5h=2h(2x+2h+5)(2x+5)h=limh02(2x+2h+5)(2x+5)=2(2x+5)2 \begin{aligned} &\frac{d}{dx} \frac{1}{2x+5}\\ &=\lim_{h\to0} \frac{\frac{1}{2(x+h)+5}-\frac{1}{2x+5}}{h}=\frac{ \frac{-2h}{(2x+2h+5)(2x+5)}}{h}\\ &=\lim_{h\to0} -\frac{2}{(2x+2h+5)(2x+5)}\\ &=-\frac{2}{(2x+5)^2} \end{aligned}


94. ddx1x2,def.\frac{d}{dx}\frac{1}{x^2}, def.

ddx1x2=limh01(x+h)21x2h=2xhh2x2(x+h)2h=2xhx2(x+h)2=2xx4=2x3 \begin{aligned} &\frac{d}{dx}\frac{1}{x^2}\\ &=\lim_{h\to0} \frac{\frac{1}{(x+h)^2}-\frac{1}{x^2}}{h}= \frac{\frac{-2xh-h^2}{x^2(x+h)^2}}{h}=\frac{-2x-h}{x^2(x+h)^2}\\ &=\frac{-2x}{x^4}=-\frac{2}{x^3} \end{aligned}


95. ddxsinx,def.\frac{d}{dx}sinx, def.

ddxsinx=limh0sin(x+h)sin(x)h=limh0sin(x)cos(h)+cos(x)sin(h)sin(x)h=limh0sinx(cos(h)1)h+cos(x)sin(h)hcos(h)=1h22!+h44!...limh0cos(h)1h=hc+h3c+..=O(h)=0sin(h)=hh33!+...limh0sin(h)h=1O(h2)=1=sin(x)0+cos(x)1=cos(x) \begin{aligned} &\frac{d}{dx} sinx=\lim_{h\to0} \frac{sin(x+h)-sin(x)}{h}\\ &=\lim_{h\to0} \frac{ sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h}\\ &=\lim_{h\to0} \frac{sinx(cos(h)-1)}{h}+cos(x)\frac{sin(h)}{h}\\ & cos(h)=1-\frac{h^2}{2!}+\frac{h^4}{4!}-...\\ & \lim_{h\to0} \frac{cos(h)-1}{h}=hc+h^3c+..=O(h)=0 \\ & sin(h)=h-\frac{h^3}{3!}+...\\ & \lim_{h\to0} \frac{sin(h)}{h}=1-O(h^2)=1\\ & \therefore =sin(x)0+cos(x)1=cos(x) \end{aligned}


96. ddxsecx,def.\frac{d}{dx}secx, def.

ddxsec(x)=limh0sec(x+h)sec(x)h=limh01/cos(x+h)1/cos(x)h=cos(x)cos(x+h)cos(x+h)cos(x)h=cos(x)cos(x)cos(h)+sin(x)sin(h)(cos(x)cos(h)sin(x)sin(h))cos(x)h=1cos(h)+tan(x)sin(h)h(cos(x)cos(h)sin(x)sin(h))=lim1cos(x)cos(h)sin(x)sin(h)(lim1cos(h)h+limtan(x)sin(h)h)=1cos(x)(0+tan(x))=sec(x)tan(x) \begin{aligned} &\frac{d}{dx}sec(x)=\lim_{h\to0}\frac{\sec(x+h)-\sec(x)}{h}\\ &=\lim_{h\to0}\frac{1/\cos(x+h)-1/\cos(x)}{h}=\frac{cos(x)-cos(x+h)}{cos(x+h)cos(x)h}\\ &=\frac{cos(x)-cos(x)cos(h)+sin(x)sin(h)}{(cos(x)cos(h)-sin(x)sin(h))cos(x)h}\\ &=\frac{1-cos(h)+tan(x)sin(h)}{h(cos(x)cos(h)-sin(x)sin(h))}\\ &=\lim \frac{1}{cos(x)cos(h)-sin(x)sin(h)} (\lim \frac{1-cos(h)}{h}+\lim \frac{tan(x)sin(h)}{h}) \\ &=\frac{1}{cos(x)}(0+tan(x))=sec(x)tan(x) \end{aligned}


97. ddxarcsinx,def.\frac{d}{dx}arcsinx, def.

ddxarcsinx=limh0arcsin(x+h)arcsin(x)h \begin{aligned} &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ \end{aligned}

fail

ddxarcsinx=limh0arcsin(x+h)arcsin(x)hsin(ab)=sinacosbsinbcosaarcsinsin(ab)=arcsin(sinacosbsinbcosa)ab=arcsin(sinacosbsinbcosa)a=arcsin(x+h),b=arcsin(x)arcsin(x+h)arcsin(x)=arcsin(sin(arcsin(x+h))cos(arcsin(x))sin(arcsin(x))cos(arcsin(x+h)))=arcsin((x+h)cos(arcsin(x))xcos(arcsin(x+h)))(cos(x)=1sin2(x))We know,limx0sinxx=1,limx0sin(x)=limx0xSo,limx0sin1(x)=limx0x=arcsin((x+h)1x2x1(x+h)2)ddxarcsinx=limh0arcsin(x+h)arcsin(x)h=limh0arcsin((x+h)1x2x1(x+h)2)h=limh0(x+h)1x2x1(x+h)2h=limh0(x+h)2(1x2)x2(1(x+h)2)h((x+h)1x2+x1(x+h)2)Numerator=(x+h)2x2(x+h)2x2+x2(x+h)2Numerator=(x+h)2x2=2xh+h2=limh02x+h(x+h)1x2+x1(x+h)2=2xx1x2+x1x2=2x2x1x2=11x2 \begin{aligned} &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ & sin(a-b) = sinacosb-sinbcosa\\ & \arcsin {sin(a-b)} = \arcsin {(sinacosb-sinbcosa)}\\ & a-b = \arcsin {(sinacosb-sinbcosa)}\\ & a=arcsin(x+h), b=arcsin(x)\\ &arcsin(x+h)-arcsin(x) = arcsin(sin(arcsin(x+h))cos(arcsin(x))-sin(arcsin(x))cos(arcsin(x+h)))\\ &=arcsin((x+h)cos(arcsin(x))-xcos(arcsin(x+h)))\\ & (cos(x) = \sqrt {1-sin^2(x)}) \\ & \text{We know,} \lim_{x\to0} \frac{sin x}{x}=1, \lim _{x\to0} sin(x) = \lim_{x\to0} x\\ &So, \lim_{x\to0} sin^{-1}(x)=\lim_{x\to0}x &=arcsin( (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} )\\ &\frac{d}{dx}arcsinx=\lim_{h\to0} \frac{arcsin(x+h)-arcsin(x)}{h}\\ &=\lim_{h\to0} \frac{arcsin( (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} )}{h}\\ &=\lim_{h\to0} \frac{ (x+h) \sqrt{1-x^2}-x\sqrt{1-(x+h)^2} }{h} \\ &=\lim_{h\to0} \frac{ (x+h)^2(1-x^2)-x^2(1-(x+h)^2)} {h ((x+h) \sqrt{1-x^2}+x\sqrt{1-(x+h)^2} )} \\ &Numerator=(x+h)^2-x^2(x+h)^2-x^2+x^2(x+h)^2\\ &Numerator=(x+h)^2-x^2=2xh+h^2\\ &=\lim_{h\to0} \frac{ 2x+h} {(x+h) \sqrt{1-x^2}+x\sqrt{1-(x+h)^2} } \\ &=\frac{2x}{x\sqrt{1-x^2}+x\sqrt{1-x^2}}=\frac{2x}{2x\sqrt{1-x^2}}\\ &=\frac{1}{\sqrt{1-x^2}} \end{aligned}


98. ddxarctanx,def.\frac{d}{dx}arctanx, def.

Try like upper case, lim tan(x)/x = 1, atan(x)/x=1

ddxarctan(x)=limh0arctan(x+h)arctan(x)htan(ab)=tan(a)tan(b)1+tan(a)tan(b)ab=arctan(tan(a)tan(b)1+tan(a)tan(b))Numerator=arctan(x+h)arctan(x)N=arctan(tan(arctan(x+h))tan(arctan(x))1+tan(arctan(x+h))tan(arctan(x)))=arctan(x+hx1+(x+h)x)=artan(h1+x2+hx)So,ddxarctan(x)=limh0arctan(x+h)arctan(x)h=limh0artan(h1+x2+hx)h=limh011+x2+hx=11+x2 \begin{aligned} &\frac{d}{dx}arctan(x)=\lim_{h\to0} \frac{arctan(x+h)-arctan(x)}{h}\\ & tan(a-b)=\frac{tan(a)-tan(b)}{1+tan(a)tan(b)}\\ & a-b = arctan(\frac{tan(a)-tan(b)}{1+tan(a)tan(b)})\\ &Numerator=arctan(x+h)-arctan(x)\\ &N=arctan( \frac{tan(arctan(x+h))-tan(arctan(x))}{1+tan(arctan(x+h))tan(arctan(x))} )\\ &=arctan( \frac{x+h-x}{1+(x+h)x} )=artan(\frac{h}{1+x^2+hx})\\ &So, \\ &\frac{d}{dx}arctan(x)=\lim_{h\to0} \frac{arctan(x+h)-arctan(x)}{h}\\ &=\lim_{h\to0} \frac{artan(\frac{h}{1+x^2+hx})}{h}\\ &=\lim_{h\to0} \frac{1}{1+x^2+hx}=\frac{1}{1+x^2}\\ \end{aligned}


99. ddxf(x)g(x),def.\frac{d}{dx}f(x)g(x), def.

ddxf(x)g(x)=limh0f(x+h)g(x+h)f(x)g(x)h=limh0f(x+h)g(x+h)f(x)g(x)g(x+h)f(x)+g(x+h)f(x)h=limh0g(x+h)(f(x+h)f(x))+f(x)(g(x+h)g(x))h=limh0g(x+h)f(x+h)f(x)h+f(x)g(x+h)g(x)h=g(x)f(x)+f(x)g(x)=f(x)g(x)+f(x)g(x) \begin{aligned} &\frac{d}{dx}f(x)g(x)=\lim_{h\to0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}\\ &=\lim_{h\to0}\frac{f(x+h)g(x+h)-f(x)g(x)-g(x+h)f(x)+g(x+h)f(x)}{h}\\ &=\lim_{h\to0} \frac{g(x+h)(f(x+h)-f(x))+f(x)(g(x+h)-g(x))}{h}\\ &=\lim_{h\to0} g(x+h)\frac{f(x+h)-f(x)}{h}+f(x)\frac{g(x+h)-g(x)}{h}\\ &=g(x)f'(x)+f(x)g'(x)=f'(x)g(x)+f(x)g'(x) \end{aligned}


100. ddxf(x)g(x),def.\frac{d}{dx} \frac{f(x)}{g(x)}, def.

ddxf(x)g(x)=limh0f(x+h)g(x+h)f(x)g(x)h=f(x+h)g(x)f(x)g(x+h)g(x)g(x+h)h=f(x+h)g(x)f(x)g(x+h)g(x)f(x)+g(x)f(x)hg(x)g(x+h)=g(x)(f(x+h)f(x))f(x)(g(x+h)g(x))hg(x)g(x+h)=g(x)f(x)f(x)g(x)g(x)2 \begin{aligned} &\frac{d}{dx} \frac{f(x)}{g(x)}=\lim_{h\to0}\frac{ \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} =\frac{ \frac{f(x+h)g(x)-f(x)g(x+h)}{g(x)g(x+h)} }{h}\\ &=\frac{ f(x+h)g(x)-f(x)g(x+h)-g(x)f(x)+g(x)f(x)}{hg(x)g(x+h)}\\ &=\frac{g(x)(f(x+h)-f(x))-f(x)(g(x+h)-g(x))}{hg(x)g(x+h)}\\ &=\frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2} \end{aligned}


101. ddxxxx\frac{d}{dx} x^{{x}^{x}}

First,ddxxxy=xx,lny=xlnx,(1/y)y=lnx+x(1/x)y=ylnx+y=xxlnx+xx \frac{d}{dx}x^x\\ y=x^x, lny=xlnx, (1/y)y'=lnx+x(1/x)\\ y'=ylnx+y=x^xlnx+x^x
Second,
ddxxxxy=xxxlny=xxln(x)1yy=(xxlnx+xx)ln(x)+xx1x=xx((lnx)2+ln(x)+1x)y=xxxxx((lnx)2+ln(x)+1x) \begin{aligned} &\frac{d}{dx} x^{x^{x}}\\ &y=x^{x^{x}} \\ &ln y = x^x ln(x) \\ &\frac{1}{y} y' = (x^xlnx+x^x)ln(x)+x^x\frac{1}{x}\\ &=x^x((lnx)^2+ln(x)+\frac{1}{x})\\ &y'=x^{x^x}x^x((lnx)^2+ln(x)+\frac{1}{x})\\ \end{aligned}


The END

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

미적분학의 본질 #2  (0) 2020.08.27
미적분학의 본질 #1  (1) 2020.08.27
Derivative100 [81-90]  (0) 2019.12.12
derivative100 [71-80]  (0) 2019.11.27
derivative100 [61-70]  (0) 2019.11.19

+ Recent posts