반응형
integral_br_31

31. 1xx3/2dx\int \frac{1}{\sqrt{x-x^{3/2}}}dx

1xx3/2dx=1x1x1/2dx=x1/21x1/2dx(u=1x1/2,du=12x1/2dx)=21u1/2du=2u1/2du=2(2)u1/2=4u=41x+C \begin{aligned} &\int \frac{1}{\sqrt{x-x^{3/2}}}dx\\ &=\int \frac{1}{\sqrt{x}\sqrt{1-x^{1/2}}}dx\\ &=\int \frac{x^{-1/2}}{\sqrt{1-x^{1/2}}}dx\\ &(u=1-x^{1/2}, du=-\frac{1}{2}x^{-1/2} dx) \\ &=-2\int \frac{1}{u^{1/2}} du=-2\int u^{-1/2} du\\ &=-2 (2)u^{1/2}=-4\sqrt{u}\\ &=-4\sqrt{1-\sqrt{x}}+C \end{aligned}


32. 1xx2dx\int \frac{1}{\sqrt{x-x^2}}dx

1xx2dx=1xx11dx=x1x11dx(u=x11,du=x2dx)=x1ux2du \begin{aligned} &\int \frac{1}{\sqrt{x-x^2}}dx \\ &=\int \frac{1}{x\sqrt{x^{-1}-1}} dx =\int \frac{x^{-1}}{\sqrt{x^{-1}-1}} dx\\ &(u=x^{-1}-1, du=-x^{-2}dx)\\ &=-\int \frac{x^{-1}}{\sqrt{u}}x^2du \end{aligned}

1xx2dx=1x1xdx(u=x,du=12xdx)=1u1u22udu=211u2du \begin{aligned} &\int \frac{1}{\sqrt{x-x^2}}dx \\ &=\int \frac{1}{\sqrt{x}\sqrt{1-x}} dx \\ &(u=\sqrt{x}, du=\frac{1}{2\sqrt{x}}dx)\\ &=\int \frac{1}{u\sqrt{1-u^2}} 2udu\\ &=2\int \frac{1}{\sqrt{1-u^2}}du \\ \end{aligned}
Right Triangle : h=1, o=u, a=sqrt(1-u^2) ,sinθ\theta = u
=21cosθcosθdθ=2θ=2arcsinu+C=2arcsinx+C =2\int \frac{1}{\cos \theta} \cos \theta d\theta =2\theta = 2 \arcsin{u}+C\\ =2\arcsin{\sqrt{x}}+C


33. e2lnxdx\int e^{2lnx} dx

e2lnxdx=elnxelnxdx=(elnx)2dx=x2dxor=elnx2dx=x2dx=13x3+C \begin{aligned} &\int e^{2lnx} dx\\ &=\int e^{lnx}e^{lnx} dx =\int (e^{lnx})^2 dx =\int x^2 dx\\ or&=\int e^{lnx^2} dx =\int x^2 dx\\ &=\frac{1}{3}x^3+C \end{aligned}


34. lnx/sqrtxdx\int lnx/sqrt x dx

lnxxdx(u=x,du=12xdx)=2lnu2du=4lnudu=4(ulnuu)=4(xlnxx)+C=2xln(x)4x+C \begin{aligned} &\int \frac{\ln x}{\sqrt x}dx \\ &(u=\sqrt x , du = \frac{1}{2\sqrt x}dx)\\ &=2\int ln u^2 du=4\int ln u du \\ &=4 (uln |u| -u ) \\ &=4 (\sqrt x ln |\sqrt x| - \sqrt x ) + C\\ &=2\sqrt x ln (x) - 4\sqrt x + C\\ \end{aligned}

lnxdx=(lnx)x1/xxdx=x(lnx)x \int ln x dx = (ln x) x - \int 1/x * x dx = x(lnx)-x


35. 1ex+exdx\int \frac{1}{e^x+e^{-x}} dx

1ex+exdxwe know  coshx=ex+ex2=121coshxdx=exe2x+1dx(u=ex,du=exdx)=duu2+1=arctanu=arctanex+C \begin{aligned} &\int \frac{1}{e^x+e^{-x}} dx \\ & \text{we know} \; cosh x=\frac{e^x+e^{-x}}{2}\\ &=\frac{1}{2}\int \frac{1}{cosh x} dx \\ &=\int \frac{e^x}{e^{2x}+1} dx (u=e^x, du=e^xdx)\\ &=\int \frac{du}{u^2+1} =\arctan {u}\\ &=\arctan{e^x}+C \end{aligned}


36. log2xdx\int log_2 x dx

log2xdx=lnxln2dx=1ln2lnxdx=1ln2(xlnxx)+C=xlog2xxln2+C \begin{aligned} &\int log_2 x dx =\int \frac{ln x}{ln 2} dx\\ &=\frac{1}{ln 2}\int ln x dx\\ &=\frac{1}{ln 2}(x ln x - x)+C\\ &=x log_2x - \frac{x}{ln 2} + C\\ \end{aligned}


37. x3sin(2x)dx\int x^3*sin(2x) dx

x3sin2xdx=x3(12cos2x)3x2(14sin2x)+6x(18cos2x)6(116sin2x)=cos2x(12x3+34x)+sin2x(34x238)+C \begin{aligned} &\int x^3\sin{2x} dx \\ &=x^3(-\frac{1}{2}cos2x)-3x^2(-\frac{1}{4}sin2x)+6x(\frac{1}{8}cos2x)-6(\frac{1}{16}sin2x)\\ &=cos 2x (-\frac{1}{2}x^3+\frac{3}{4}x)+sin2x(\frac{3}{4}x^2-\frac{3}{8})+C \end{aligned}


38. x2[1+x3]1/3dx\int x^2[1+x^3]^{1/3} dx

x21+x33dx(u=1+x3,du=3x2dx)=13u3du=13u13du=1334u1+13=14uu3=14(1+x3)1+x33+C \begin{aligned} &\int x^2 \sqrt[3]{1+x^3} dx \\ &(u=1+x^3, du=3x^2dx) \\ &=\frac{1}{3}\int \sqrt[3]u du = \frac{1}{3}\int u^{\frac{1}{3}} du \\ &=\frac{1}{3} \frac{3}{4}u^{1+\frac{1}{3}}=\frac{1}{4}u\sqrt[3]{u}\\ &=\frac{1}{4}(1+x^3)\sqrt[3]{1+x^3}+C \end{aligned}


39. 1/(x2+4)2dx\int 1/(x^2 + 4)^2 dx

1(x2+4)2dx(x=2tany,dx=2sec2ydy,y=arctanx2)=2sec2y(4(tan2y+1))2dy=sec2y8sec4ydy=18cos2ydy=1161+cos2ydy=y16+132sin2y=116arctanx2+116sinycosy(righttriangleangle=y,h=sqrt(x2+4)a=2,o=x)=116arctanx2+116xx2+42x2+4=116arctanx2+x8(x2+4)+C \begin{aligned} &\int \frac{1}{(x^2 + 4)^2} dx \\ &(x=2tany, dx=2sec^2ydy, y=\arctan{\frac{x}{2}}) \\ &=\int \frac{2sec^2y}{(4(tan^2y+1))^2}dy=\int \frac{sec^2y}{8sec^4y}dy\\ &=\frac{1}{8}\int cos^2y dy =\frac{1}{16}\int 1+\cos{2y}dy\\ &=\frac{y}{16}+\frac{1}{32}\sin{2y}=\frac{1}{16}arctan{\frac{x}{2}}+\frac{1}{16}sin y cos y\\ &(right triangle angle=y, h=sqrt(x^2+4) a=2, o=x)\\ &=\frac{1}{16}arctan{\frac{x}{2}}+\frac{1}{16}\frac{x}{\sqrt{x^2+4}} \frac{2}{\sqrt{x^2+4}}\\ &=\frac{1}{16}arctan{\frac{x}{2}}+\frac{x}{8(x^2+4)}+C \end{aligned}


40. 12sqrt(x21)dx\int_1^2 sqrt(x^2-1) dx

12x21dx,(x=sec(y),dx=sec(y)tan(y)dy)tan2ysecytanydy=secytan2ydy(secytanyI>secy)=tanysecysec3ydy \begin{aligned} &\int_1^2 \sqrt{x^2-1} dx , (x=sec(y), dx=sec(y) tan(y) dy)\\ &\int \sqrt{\tan^2y} \sec y \tan y dy\\ &=\int \sec y \tan^2 y dy (sec y tan y -I-> sec y) \\ &=\tan y \sec y -\int \sec^3 y dy\\ \end{aligned}

sec3xdx=secxsec2xdx(sec2xI>tanx)=secxtanxsecxtanxtanxdx=secxtanxsecx(sec2x1)dx=secxtanxsec3xdx+secxdx=secxtanx+lnsecx+tanxsec3xdx=12(secxtanx+lnsecx+tanx) \int \sec^3 x dx = \int \sec x \sec^2 x dx (sec^2x-I->tan x)\\ =\sec x \tan x - \int \sec x \tan x \tan x dx\\ =\sec x \tan x - \int \sec x (\sec^2 x -1 ) dx \\ =\sec x \tan x - \int \sec^3 x dx +\int \sec x dx \\ =\sec x \tan x + ln |sec x + tan x|-\int \sec^3x dx\\ = \frac{1}{2}(\sec x \tan x + ln |sec x + tan x|)

x=sec(y), y=arcsec x, RT. angle=y, h=x, a=1, o=sqrt(x^2-1)
=tanysecysec3ydy=tanysecy12(secytany+lnsecy+tany)=12xx2112lnx21+x+C12x21dx=[12xx2112lnx21+x]12=312ln(3+2) =\tan y \sec y -\int \sec^3 y dy\\ =\tan y \sec y -\frac{1}{2}(\sec y \tan y + ln |sec y + tan y|)\\ =\frac{1}{2}x\sqrt{x^2-1}-\frac{1}{2}ln| \sqrt{x^2-1}+x|+C\\ \int_1^2 \sqrt{x^2-1} dx=\left[\frac{1}{2}x\sqrt{x^2-1}-\frac{1}{2}ln| \sqrt{x^2-1}+x|\right]_1^2\\ =\sqrt{3}-\frac{1}{2}ln(\sqrt{3}+2) \\


Author: crazyj7@gmail.com

31. [1:49:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6572s) integral of (x-x^(3/2))^-1/2 32. [1:52:37](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6757s) integral of (x-x^2)^-1/2 33. [1:56:03](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6963s) integral of e^(2lnx) 34. [1:56:57](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7017s) integral of lnx/sqrt x 35. [2:00:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7232s) integral of 1/e^x+e^-x 36. [2:01:57](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7317s) integral of log(x) base 2 37. [2:05:15](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7515s) integral of x^3*sin2x 38. [2:08:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7712s) integral of x^2[1+x^3]^1/3 39. [2:12:30](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7950s) integral of 1/(x^2 + 4)^2 40. [2:19:38](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=8378s) integral of sqrt(x^2-1) from 1 to 2

'Math' 카테고리의 다른 글

Integral100 [51-60]  (0) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21
Integral100 [21-30]  (1) 2019.10.15
Integral100 [11-20]  (0) 2019.10.13
Integral100 [1-10]  (2) 2019.10.12
반응형
integral_br_21

21. sin3xcos2xdx\int \sin^3{x} \cos^2{x}dx

sin3xcos2xdx=sinxsin2xcos2xdx=sinx(1cos2x)cos2xdx(u=cosx,du=sinxdx)=(1u2)u2du=u4u2dx=15cos5x13cos3x+C \begin{aligned} &\int \sin^3{x} \cos^2{x}dx\\ &=\int \sin{x}\sin^2{x}\cos^{2}x dx\\ &=\int \sin{x}(1-\cos^2{x})\cos^{2}x dx\\ &(u=cosx, du=-sinx dx) \\ &=-\int (1-u^2)u^{2} du = \int u^4-u^2dx\\ &=\frac{1}{5}cos^5x-\frac{1}{3}cos^3x+C\\ \end{aligned}


22. 1x2x2+1dx\int \frac{1}{x^2\sqrt{x^2+1}} dx

1x2x2+1dx=1tan2θsecθsec2θdθ(x=tanθ,dx=sec2θdθ)=secθcot2θdθ=cos2θcosθsin2θdθ=cosθsin2θdθ(t=sinθ,dt=cosθdθ)=dtt2=1t=1sinθ=cscθ+C=csc(arctanx)+C=x2+1x+C \begin{aligned} &\int \frac{1}{x^2\sqrt{x^2+1}} dx\\ &=\int \frac{1}{tan^2\theta sec\theta} sec^2\theta d\theta (x=\tan{\theta}, dx=sec^2\theta d\theta) \\ &=\int sec\theta cot^2\theta d\theta =\int \frac{cos^2\theta}{cos\theta sin^2\theta} d\theta \\ &=\int \frac{cos \theta}{sin^2 \theta} d\theta (t=sin\theta, dt=cos\theta d\theta)\\ &=\int \frac{dt}{t^2} = -\frac{1}{t}=-\frac{1}{sin\theta}=-csc\theta+C\\ &=-\csc({\arctan{x}}) + C \\ &=-\frac{\sqrt{x^2+1}}{x} + C \\ \end{aligned}
Alternative

1x2x2+1dx=1x2x1+x2dx=x31+x2dx(u=1+x2,du=2x3dx)=12u1/2du=122u1/2=1+1x2+C \begin{aligned} &\int \frac{1}{x^2\sqrt{x^2+1}} dx\\ &=\int \frac{1}{x^2 x \sqrt{1+x^{-2}}} dx\\ &=\int \frac{x^{-3}}{\sqrt{1+x^{-2}}} dx (u=1+x^{-2}, du=-2x^{-3}dx)\\ &=\int -\frac{1}{2}u^{-1/2}du = -\frac{1}{2}2u^{1/2}=-\sqrt{1+\frac{1}{x^2}}+C\\ \end{aligned}


23. sinxsecxtanxdx\int \sin{x}\sec{x}\tan{x} dx

sinxsecxtanxdx=tan2xdx=sec2x1dx=1cos2xcos2xdx=sec2xdxx=tanxx+C \begin{aligned} &\int \sin{x}\sec{x}\tan{x} dx = \int \tan^2x dx =\int sec^2x -1dx\\ &=\int \frac{1-cos^2x}{cos^2x} dx = \int sec^2x dx-x\\ &=\tan{x}-x+C\\ \end{aligned}


24. sec3(x)dx\int sec^3(x)dx

sec3(x)dx=sec(x)sec2(x)dx=secxtanxsecxtanxtanxdx=secxtanxsecxtan2xdx=secxtanxsecx(sec2x1)dx=secxtanx+secxdxsec3xdx=secxtanx+lnsecx+tanxsec3xdx \begin{aligned} &\int sec^3(x)dx=\int sec(x)sec^2(x) dx\\ &= \sec x \tan x - \int \sec x \tan x \tan x dx\\ &= \sec x \tan x - \int \sec x \tan^2 x dx\\ &= \sec x \tan x - \int \sec x (sec^2x-1) dx\\ &= \sec x \tan x + \int sec x dx - \int sec^3x dx\\ &= \sec x \tan x + \ln | secx+tanx| - \int sec^3x dx \\ \end{aligned}

2sec3(x)dx=secxtanx+lnsecx+tanxsec3(x)dx=12(secxtanx+lnsecx+tanx)+C \begin{aligned} &2\int sec^3(x)dx=\sec x \tan x +\ln | secx+tanx| \\ &\therefore \int sec^3(x)dx=\frac{1}{2} (\sec x \tan x +\ln | secx+tanx|)+C \\ \end{aligned}


25. 1/(xsqrt(9x21))dx\int 1/(x*sqrt(9x^2-1)) dx

1x9x21dx(3x=secy,3dx=secytanydy)=3secytanysecytany3dy=y=sec13x+C \begin{aligned} &\int \frac{1}{x\sqrt{9x^2-1}} dx \\ &(3x=\sec{y}, 3dx=\sec y \tan y dy)\\ &=\int \frac{3}{\sec{y} \tan{y} } \frac{\sec y \tan y }{3} dy \\ &= y =\sec^{-1} 3x +C \\ \end{aligned}


26. cos(sqrt(x))dx\int cos(sqrt(x)) dx

cos(x)dx(u=x,du=12xdx)=cosu2xdu=2ucosudu=2(usinu(cosu))=2usinu+2cosu+C=2xsinx+2cosx+C \begin{aligned} &\int \cos ({\sqrt{x}}) dx \\ &(u=\sqrt{x}, du=\frac{1}{2\sqrt{x}}dx )\\ &= \int \cos {u} 2 \sqrt{x} du\\ &= 2\int u\cos {u} du = 2( u sin u - (-cos u) ) \\ &= 2u sin u +2 cos u +C\\ &=2\sqrt{x}\sin{\sqrt{x}} + 2 \cos{\sqrt{x}} + C \\ \end{aligned}


27. cosecxdx\int \cosec{x}dx

cosecxdx=cosecx(cosecx+cotx)(cosecx+cotx)dx(u=cosecx+cotx,du=(cosecxcotxcosec2x)dx)=1udu=lncosecx+cotx+C \begin{aligned} &\int \cosec{x} dx \\ &=\int \frac{\cosec{x}(cosec{x}+cot{x}) }{ (cosec{x}+cot{x}) } dx \\ &( u = cosec{x}+cot{x} , du = (-\cosec{x}\cot{x}-\cosec^2{x}) dx )\\ &=-\int \frac{1}{u} du \\ &=-\ln|{\cosec{x}+\cot{x}}| + C \\ \end{aligned}


28. sqrt(x2+4x+13)dx\int sqrt(x^2+4x+13) dx

x2+4x+13dx=(x+2)2+32dx(u=x+23,3du=dx)=332u2+32du=9u2+1du(u=tany,du=sec2ydy)=9secysec2ydy=9sec3ydy=9[sec(y)tan(y)sec(y)tan(y)tan(u)dy]=9sec(y)tan(y)9sec(y)(sec2y1)dy=9sec(y)tan(y)9sec3(y)dy+9secydy18sec3(y)dy=9sec(y)tan(y)+9lnsec(y)+tan(y)9sec3(y)dy=92(sec(y)tan(y)+lnsec(y)+tan(y))=92sec(y)tan(y)+92lnsec(y)+tan(y)(tany=x+23,angle=y,h=x2+4x+13,adj=3,opposite=x+2)=92x2+4x+133x+23+92lnx2+4x+133+x+23=(x+2)x2+4x+132+92lnx+2+x2+4x+133+C=(x+2)x2+4x+132+92lnx+2+x2+4x+13+C2 \begin{aligned} &\int \sqrt{x^2+4x+13} dx \\ &=\int \sqrt{(x+2)^2+3^2} dx \\ & (u=\frac{x+2}{3} , 3 du = dx) \\ &=3\int \sqrt{3^2u^2+3^2} du \\ &=9\int \sqrt{u^2+1} du \\ &(u=tan {y}, du=sec^2ydy)\\ &=9\int \sec{y} \sec^2{y} dy = 9\int sec^3y dy \\ &=9\left[sec(y)tan(y)-\int sec(y)tan(y)tan(u) dy\right] \\ &=9sec(y)tan(y)-9\int sec(y)(sec^2y-1) dy \\ &=9sec(y)tan(y)-9\int sec^3(y)dy+9\int sec y dy \\ &18\int sec^3(y)dy = 9sec(y)tan(y)+9\ln|sec(y)+tan(y)|\\ &9\int sec^3(y)dy = \frac{9}{2}(sec(y)tan(y)+\ln|sec(y)+tan(y)|)\\ &= \frac{9}{2}sec(y)tan(y)+\frac{9}{2}\ln|sec(y)+tan(y)|\\ &(tan{y}=\frac{x+2}{3}, angle=y, h=\sqrt{x^2+4x+13} , adj=3, opposite=x+2)\\ &= \frac{9}{2}\frac{\sqrt{x^2+4x+13}}{3}\frac{x+2}{3}+\frac{9}{2}\ln{|\frac{\sqrt{x^2+4x+13}}{3}+\frac{x+2}{3}|} \\ &=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|\frac{x+2+\sqrt{x^2+4x+13}}{3}|}+C\\ &=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|x+2+\sqrt{x^2+4x+13}|}+C_2\\ \end{aligned}\\


29. e2xcosxdx\int e^{2x}*cosx dx

e2xcosxdx=e2xsinx(2e2x)(cosx)+(4e2x)(cosx)dx=e2xsinx+2e2xcosx4e2xcosxdx5e2xcosxdx=e2xsinx+2e2xcosxe2xcosxdx=15e2xsinx+25e2xcosx+C \begin{aligned} &\int e^{2x} \cos{x} dx \\ &=e^{2x} sin{x}-(2e^{2x})(-cos{x})+\int (4e^{2x})(-cos{x}) dx \\ &=e^{2x}sin{x}+2e^{2x}cos{x}-4\int e^{2x}cos{x}dx\\ &5\int e^{2x}\cos{x} dx= e^{2x}sin{x}+2e^{2x}cos{x} \\ &\int e^{2x} \cos{x} dx =\frac{1}{5}e^{2x}sin{x}+ \frac{2}{5}e^{2x}cos{x}+C\\ \end{aligned}


30. 35(x3)9dx\int_3^5 (x-3)^9 dx

35(x3)9dx(u=x3)=02u9du=[u1010]02=102.4 \begin{aligned} &\int_3^5 (x-3)^9 dx (u=x-3)\\ &=\int_0^2 u^9 du =\bigg[ \frac{u^{10}}{10} \bigg ]_0^2 \\ &=102.4 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [41-50]  (0) 2019.10.21
Integral100 [31-40]  (0) 2019.10.16
Integral100 [11-20]  (0) 2019.10.13
Integral100 [1-10]  (2) 2019.10.12
integral ln gamma  (0) 2019.08.01
반응형

 

11. ∫sin⁡xsec⁡2019xdx\int \frac{\sin{x}}{\sec^{2019}x}dx

∫sin⁡xsec⁡2019xdx=∫sin⁡xcos⁡2019xdx(u=cos⁡x,du=−sin⁡xdx)=−∫u2019du=−12020u2020+C=−12020cos⁡2020x+C \begin{aligned} &\int \frac{\sin{x}}{\sec^{2019}x}dx\\ &=\int \sin{x}\cos^{2019}x dx\\ &(u=\cos x, du=-\sin x dx)\\ &=-\int u^{2019} du\\ &=-\frac{1}{2020}u^{2020}+C\\ &=-\frac{1}{2020}\cos^{2020}x+C\\ \end{aligned}


12. ∫xsin⁡−1x1−x2dx\int \frac{x\sin^{-1}{x}}{\sqrt{1-x^2}} dx

∫xsin⁡−1x1−x2dx(x=sinθ,dx=cos⁡θdθ)(cosθ=1−sin⁡2θ=1−x2)=∫sin⁡θsin⁡−1sin⁡θ1−sin⁡2θcos⁡θdθ=∫θsin⁡θdθ=θ(−cos⁡θ)−(−sin⁡θ)+C=sin⁡θ−θcos⁡θ+C=x−sin⁡−1(x)1−x2+C \begin{aligned} &\int \frac{x\sin^{-1}{x}}{\sqrt{1-x^2}} dx\\ &(x = sin \theta, dx=\cos\theta d\theta)\\ &(cos \theta = \sqrt{1-\sin^2\theta} = \sqrt{1-x^2} )\\ &=\int \frac{\sin\theta \sin^{-1}{\sin\theta}}{\sqrt{1-\sin^2\theta}} \cos\theta d\theta\\ &=\int \theta \sin\theta d\theta \\ &=\theta (-\cos\theta)-(-\sin\theta)+C\\ &=\sin\theta -\theta\cos\theta +C\\ &=x-\sin^{-1}(x)\sqrt{1-x^2} +C\\ \end{aligned}


13. ∫2sin⁡xsin⁡2xdx\int \frac{2\sin{x}}{\sin{2x}}dx

∫2sin⁡xsin⁡2xdx=∫2sin⁡x2sin⁡xcos⁡xdx=∫1cos⁡xdx \begin{aligned} &\int \frac{2\sin{x}}{\sin{2x}}dx\\ &=\int \frac{2\sin{x}}{2\sin{x}\cos{x}}dx\\ &=\int \frac{1}{\cos{x}}dx \end{aligned}
=∫sec⁡xdx=\int \sec{x}dx
=∫cos⁡xcos⁡2xdx=∫cos⁡x1−sin⁡2xdx(u=sin⁡x,du=cos⁡xdx)=∫11−u2du=∫1(1−u)(1+u)u=∫12(11−u+11+u)du=12(−ln⁡∣1−u∣+ln∣1+u∣)+C=12ln⁡∣1+u1−u∣+C=12ln⁡∣1+sin⁡x1−sin⁡x∣+C \begin{aligned} &=\int \frac{\cos{x}}{\cos^2{x}}dx=\int \frac{\cos{x}}{1-\sin^2{x}}dx \\ &(u=\sin{x} , du=\cos{x}dx) \\ &=\int \frac{1}{1-u^2} du = \int \frac{1}{(1-u)(1+u)} u\\ &= \int \frac{1}{2} \left(\frac{1}{1-u} + \frac{1}{1+u} \right) du\\ &=\frac{1}{2} (-\ln|1-u|+ln|1+u|)+C\\ &=\frac{1}{2} \ln |\frac{1+u}{1-u}|+C\\ &=\frac{1}{2} \ln \left|\frac{1+\sin{x}}{1-\sin{x}} \right|+C\\ \end{aligned}
Alternatives…
ln⁡(sin⁡x2+cosx2)−ln⁡(cosx2−sinx2)=ln⁡∣sin⁡x2+cosx2cosx2−sinx2∣=ln⁡∣(sin⁡x2+cosx2)2cos2x2−sin2x2∣=ln⁡∣1+2sinx2cosx2cos2x2−sin2x2∣=ln⁡∣1+sin⁡xcos⁡x∣ \ln(\sin\frac{x}{2}+cos\frac{x}{2})-\ln( cos\frac{x}{2}-sin\frac{x}{2})\\ = \ln \left| \frac{\sin\frac{x}{2}+cos\frac{x}{2}}{cos\frac{x}{2}-sin\frac{x}{2}} \right| \\ = \ln \left| \frac{(\sin\frac{x}{2}+cos\frac{x}{2})^2}{cos^2\frac{x}{2}-sin^2\frac{x}{2}} \right| \\ = \ln \left| \frac{1+2sin\frac{x}{2}cos\frac{x}{2}}{cos^2\frac{x}{2}-sin^2\frac{x}{2}} \right| \\ = \ln \left| \frac{1+\sin{x}}{\cos{x}} \right| \\
12ln⁡∣1+sin⁡x1−sin⁡x∣=ln⁡∣1+sin⁡x1−sin⁡x∣=ln⁡∣1+sin⁡x1+sin⁡x1−sin⁡x1+sin⁡x∣=ln⁡∣1+sin⁡x1−sin⁡2x∣=ln⁡∣1+sin⁡xcos⁡x∣=ln⁡∣sec⁡x+tan⁡x∣ \frac{1}{2} \ln \left|\frac{1+\sin{x}}{1-\sin{x}} \right|\\ = \ln \left|\frac{\sqrt{1+\sin{x}}}{\sqrt{1-\sin{x}}} \right| \\ = \ln \left|\frac{\sqrt{1+\sin{x}}\sqrt{1+\sin{x}}}{\sqrt{1-\sin{x}}\sqrt{1+\sin{x}}} \right| \\ = \ln \left|\frac{1+\sin{x}}{\sqrt{1-\sin^2{x}}} \right| \\ = \ln \left|\frac{1+\sin{x}}{\cos{x}} \right| \\ = \ln \left| \sec{x}+\tan{x} \right| \\


14. ∫cos⁡22xdx\int \cos^2{2x} dx

∫cos⁡22xdx=∫1+cos⁡4x2dx=12x+12∫cos⁡4xdx=12x+1214sin⁡4x+C=12x+18sin⁡4x+C \begin{aligned} &\int \cos^2{2x} dx \\ &=\int \frac{1+\cos{4x}}{2} dx\\ &=\frac{1}{2}x+\frac{1}{2}\int \cos{4x}dx\\ &=\frac{1}{2}x+\frac{1}{2}\frac{1}{4}\sin{4x}+C \\ &=\frac{1}{2}x+\frac{1}{8}\sin{4x}+C \\ \end{aligned}
Check…
ddx[12x+18sin⁡4x]=12+12cos⁡4x=1+cos⁡4x2=cos⁡22x \frac{d}{dx} [ \frac{1}{2}x+\frac{1}{8}\sin{4x} ]\\ = \frac{1}{2}+\frac{1}{2} \cos{4x} = \frac{1+\cos{4x}}{2}\\ = \cos^2{2x}


15. ∫1x3+1dx\int \frac{1}{x^3+1}dx

x3+1=(x+1)(x2−x+1)=x3−x2+x+x2−x+1x^3+1 = (x+1)(x^2-x+1)= x^3-x^2+x+x^2-x+1
ax+bx2−x+1+cx+1,a+c=0,b+a−c=0,b+c=1\frac{ax+b}{x^2-x+1}+\frac{c}{x+1}, a+c=0, b+a-c=0, b+c=1
c=−a,b+2a=0,b=−2a,−2a+−a=1c=-a, b+2a=0, b=-2a, -2a+-a=1
a=−13,c=13,b=23a=-\frac{1}{3}, c=\frac{1}{3}, b=\frac{2}{3}

∫1x3+1dx=∫1(x+1)(x2−x+1)dx=∫−13x+23x2−x+1dx+∫13x+1dx=−13∫x−2x2−x+1dx+13ln⁡∣x+1∣+C \begin{aligned} &\int \frac{1}{x^3+1}dx\\ &=\int \frac{1}{(x+1)(x^2-x+1)}dx\\ &=\int \frac{-\frac{1}{3}x+\frac{2}{3}}{x^2-x+1}dx+\int \frac{\frac{1}{3}}{x+1}dx\\ &=-\frac{1}{3}\int \frac{x-2}{x^2-x+1}dx+\frac{1}{3}\ln|x+1|+C\\ \end{aligned}
∫x−2x2−x+1dx=∫x−2(x−12)2+34dx(u=x−12)=∫u−32u2+34du=∫uu2+34du−32∫1u2+34du \int \frac{x-2}{x^2-x+1}dx\\ =\int \frac{x-2}{(x-\frac{1}{2})^2+\frac{3}{4}}dx \\ (u=x-\frac{1}{2}) \\ =\int \frac{u-\frac{3}{2} }{u^2+\frac{3}{4}} du \\ =\int \frac{u}{u^2+\frac{3}{4}}du-\frac{3}{2}\int\frac{1}{u^2+\frac{3}{4}}du \\
Tip. 원래는 이렇게 하는 것이 더 낫다. 분모의 미분형태(2x-1)를 분자에서 파생.
∫x−2x2−x+1dx=12∫(2x−1)−3x2−x+1dx=12∫2x−1x2−x+1dx−32∫1(x−12)2+34dx \int \frac{x-2}{x^2-x+1}dx\\ =\frac{1}{2}\int \frac{(2x-1)-3}{x^2-x+1} dx\\ =\frac{1}{2}\int \frac{2x-1}{x^2-x+1} dx-\frac{3}{2}\int \frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}} dx\\

A.∫uu2+34du(t=u2+34,dt=2udu)=12∫1tdt=12ln⁡∣t∣=12ln⁡∣x2−x+1∣B.∫1u2+34du=∫1u2+(32)2du=23arctan⁡(23u)=23arctan⁡(23(x−12))  ∴∫x−2x2−x+1dx=∫uu2+34du−32∫1u2+34du=12ln⁡∣x2−x+1∣−3223arctan⁡(23(x−12))=12ln⁡∣x2−x+1∣−3arctan⁡(2x−13) A. \int \frac{u}{u^2+\frac{3}{4}}du\\ (t=u^2+\frac{3}{4}, dt=2udu)\\ =\frac{1}{2}\int \frac{1}{t} dt=\frac{1}{2}\ln|t|=\frac{1}{2}\ln|x^2-x+1|\\ B.\int \frac{1}{u^2+\frac{3}{4}}du\\ = \int \frac{1}{u^2+(\frac{\sqrt{3}}{2})^2}du\\ = \frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}u)=\frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}(x-\frac{1}{2})) \\ \; \\ \therefore \int \frac{x-2}{x^2-x+1}dx = \int \frac{u}{u^2+\frac{3}{4}}du-\frac{3}{2}\int\frac{1}{u^2+\frac{3}{4}}du \\ = \frac{1}{2}\ln|x^2-x+1| -\frac{3}{2}\frac{2}{\sqrt{3}} \arctan (\frac{2}{\sqrt{3}}(x-\frac{1}{2})) \\ = \frac{1}{2}\ln|x^2-x+1| -\sqrt{3} \arctan (\frac{2x-1}{\sqrt{3}})\\

∴∫1x3+1dx=−13∫x−2x2−x+1dx+13ln⁡∣x+1∣+C=−16ln⁡∣x2−x+1∣+33arctan⁡(2x−13)+13ln⁡∣x+1∣+C \begin{aligned} \therefore &\int \frac{1}{x^3+1}dx\\ &=-\frac{1}{3}\int \frac{x-2}{x^2-x+1}dx+\frac{1}{3}\ln|x+1|+C\\ &= -\frac{1}{6}\ln|x^2-x+1| +\frac{\sqrt{3}}{3} \arctan (\frac{2x-1}{\sqrt{3}})+\frac{1}{3}\ln|x+1|+C\\ \end{aligned}


16. ∫xsin⁡2xdx\int x\sin^2{x} dx

∫xsin⁡2xdx=∫x1−cos⁡2x2dx=12∫xdx−12∫xcos⁡2xdx \begin{aligned} &\int x\sin^2{x} dx\\ &=\int x\frac{1-\cos{2x}}{2}dx\\ &=\frac{1}{2}\int xdx -\frac{1}{2}\int x\cos{2x}dx \end{aligned}

∫xcos⁡2xdx=x(12sin⁡2x)−12∫sin⁡2xdx=xsin⁡2x2−1212(−cos⁡2x)=xsin⁡2x2+cos⁡2x4 \int x\cos{2x}dx=x(\frac{1}{2}\sin{2x})-\frac{1}{2}\int \sin{2x}dx\\ =\frac{x\sin{2x}}{2} -\frac{1}{2} \frac{1}{2}(-\cos{2x})\\ =\frac{x\sin{2x}}{2}+\frac{\cos{2x}}{4} \\

=12∫xdx−12∫xcos⁡2xdx=14x2−xsin⁡2x4−cos⁡2x8+C=x2−xsin⁡2x4−cos⁡2x8+C=2x2−2xsin⁡2x−cos⁡2x8+C \begin{aligned} &=\frac{1}{2}\int xdx -\frac{1}{2}\int x\cos{2x}dx\\ &=\frac{1}{4}x^2 -\frac{x\sin{2x}}{4}-\frac{\cos{2x}}{8}+C\\ &=\frac{x^2-x\sin{2x}}{4} -\frac{\cos{2x}}{8}+C\\ &=\frac{2x^2-2x\sin{2x}-\cos{2x}}{8} +C\\ \end{aligned}


17. ∫(x+1x)2dx\int (x+\frac{1}{x})^2 dx

∫(x+1x)2dx=∫x2+2+1x2dx=13x3+2x−1x+C \begin{aligned} &\int (x+\frac{1}{x})^2 dx\\ &=\int x^2+2+\frac{1}{x^2}dx \\ &=\frac{1}{3}x^3+2x -\frac{1}{x}+C \end{aligned}


18 ∫3x2+4x+29dx\int \frac{3}{x^2+4x+29} dx

∫3x2+4x+29dx=3∫1(x+2)2+52dx=35arctan⁡x+25+C \begin{aligned} &\int \frac{3}{x^2+4x+29} dx\\ &=3\int \frac{1}{ (x+2)^2+5^2} dx\\ &=\frac{3}{5}\arctan{\frac{x+2}{5}} +C \\ \end{aligned}


19 ∫cot5(x)dx\int cot^5(x)dx

∫cot⁡5xdx=∫cos5xsin5xdx=∫cos4xcos⁡xsin4xsin⁡xdx=∫(cos2x)2cos⁡x(sin2x)2sin⁡xdx=∫(1−sin2x)2cos⁡x(sin2x)2sin⁡xdx=∫(1−2sin2x+sin4x)cos⁡x(sin2x)2sin⁡xdx=∫cosxsin5xdx−2∫cosxsin3xdx+∫cosxsinxdx(u=sinx,du=cosxdx)=∫u−5du−2∫u−3du+∫1udx=−14u4+1u2+ln∣u∣+C=−14sin4x+1sin2x+ln∣sinx∣+C=−14csc4x+csc⁡2x+ln∣sinx∣+C \begin{aligned} &\int \cot^5{x} dx\\ &=\int \frac{cos^5{x}}{ sin^5{x}} dx\\ &=\int \frac{cos^4{x}\cos{x}}{ sin^4{x}\sin{x}} dx\\ &=\int \frac{(cos^2{x})^2\cos{x}}{ (sin^2{x})^2\sin{x}} dx\\ &=\int \frac{(1-sin^2{x})^2\cos{x}}{(sin^2{x})^2\sin{x}} dx\\ &=\int \frac{(1-2sin^2{x}+sin^4{x})\cos{x}}{(sin^2{x})^2\sin{x}} dx\\ &=\int \frac{cos x}{sin^5x} dx -2\int \frac{cos x}{sin^3x}dx + \int \frac{cos x}{sin x}dx\\ &(u=sin x, du=cos x dx)\\ &=\int u^{-5}du-2\int u^{-3}du +\int \frac{1}{u} dx\\ &=-\frac{1}{4u^4}+\frac{1}{u^2}+ln|u|+C\\ &=-\frac{1}{4sin^4x}+\frac{1}{sin^2x}+ln|sin x|+C\\ &=-\frac{1}{4}csc^4x+\csc^2{x}+ln|sin x|+C\\ \end{aligned}


20. ∫−11tanxx4+x2+1dx\int_{-1}^{1} \frac{tan x}{x^4+x^2+1} dx

∫−11tanxx4+x2+1dx=0(oddfunction;x−>even.sin/cos−>odd) \begin{aligned} &\int_{-1}^{1} \frac{tan x}{x^4+x^2+1} dx\\ &=0 \\ &(odd function; x -> even. sin/cos -> odd) \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [31-40]  (0) 2019.10.16
Integral100 [21-30]  (1) 2019.10.15
Integral100 [1-10]  (2) 2019.10.12
integral ln gamma  (0) 2019.08.01
integral ln sin  (0) 2019.08.01

+ Recent posts