71. ∫1/(cbrt(x)+1)dx
∫3x+11dx(u=3x,du=33x21dx=31x−32dx=31u−2dx)=3∫u+1u2du=3∫u+1u2−1+1du=3∫u+1(u−1)(u+1)du+3∫u+11du=3(21u2−u)+3ln∣u+1∣=23u2−3u+3ln∣u+1∣+C=233x2−33x+3ln∣3x+1∣+C
Alt.
(u=3x+1,x=(u−1)3,dx=3(u−1)2du)=∫u13(u−1)2du=3∫uu2−2u+1du=3∫u−2+(1/u)du=3(21u2−2u+ln∣u∣)=23(3x+1)2−6(3x+1)+3ln∣3x+1∣+C
72. ∫cbrt(x+1)1dx
∫3x+11dx(u=3x+1,du=33(x+1)21dx=31(x+1)−32dx=31u−2dx)=3∫uu2du=3∫udu=23u2+C=23(x+1)32+C
Alt.
(u=x+1)
∫3x+11dx=∫u−31du=23u2+C=23(x+1)32+C
73. ∫(sin(x)+cos(x))2dx
∫(sin(x)+cos(x))2dx=∫1+2sin(x)cos(x)dx=x+∫sin(2x)dx=x−21cos(2x)+C
74. ∫2xln(1+x)dx
∫2xln(1+x)dx=2∫xln(1+x)dx(ln쪽을 미분하는 방향으로 부분적분)=2(ln(1+x)21x2−∫1+x121x2dx)=ln(1+x)x2−∫1+xx2dx=ln(1+x)x2−∫1+xx2−1+1dx=ln(1+x)x2−∫x−1+1+x1dx=ln(1+x)x2−21x2+x−ln(1+x)+C
75. ∫1/(x(1+sin2ln(x)))dx
∫x(1+sin2ln(x))1dx(u=ln(x),du=x1dx:1/x과ln(x)에서치환착안.)=∫1+sin2udu:(sin에대해치환,변환(반각)해보고,cos으로나눠도본다.sec,tan을만들수있다는것을착안.)=∫sec2u+tan2usec2udu=∫1+2tan2usec2udu,(t=tanu,dt=sec2udu)=∫1+2t2dt,(t=tanu,dt=sec2udu)=21arctan2t=21arctan(2tan(ln(x)))+C
76. ∫sqrt((1−x)/(1+x))dx
Try
∫1+x1−xdx(전체치환? 일부치환. 분자분모곱, pm 등)(u=1+x1−x,du=211−x1+x1−2x+x21−x+1+xdx)(du=211−x1+x(1−x)22dx=u(1−x)21dx)(u2=1+x1−x,xu2+x=1−u2,x=1+u21−u2)=∫u2(1−x)2du=∫u2(1−1+u21−u2)2du=∫u2(1+u22u2)2du=∫4u6(1+u21)2du
Try
∫1+x1−xdx(u=1+x1−x,du=1+2x+x2−1−x−(1−x)dx=(1+x)2−2dx)(xu+u=1−x,x(u+1)=1−u,x=1+u1−u)=−21∫u(1+x2)du=−21∫u(1+(1+2u+u21−2u+u2)2)du=−21∫u(1+2u+u22+2u2)2du=−2∫u(1+u)4(1+u2)2du
Solve
∫1+x1−xdx=∫(1+x)(1−x)(1−x)(1−x)dx=∫1−x2(1−x)2dx=∫1−x21−xdx=∫1−x21dx−∫1−x2xdx(u=1−x2,du=−2xdx)=sin−1x+21∫u1du=sin−1x+21∫u−21du=sin−1x+1−x2+C
77. ∫xx/ln(x)dx
Interesting…
∫xln(x)xdx((ln(x)x)′=(ln(x))2ln(x)−1)(y=xln(x)x,ln(y)=ln(x)xln(x))(y1y′=(ln(x))2ln(x)−1ln(x)+ln(x)xx1)(y1y′=ln(x)ln(x)−1+ln(x)1=1)y′=y=xln(x)x+C
Alt.
∫xln(x)xdx=∫(elnx)ln(x)xdx=∫exdx=ex+C(xln(x)x=ex)
78. ∫arcsin(sqrt(x))dx
∫arcsin(x)dx( 루트부분을 치환. 부분적분)(u=x,u2=x,2udu=dx)=2∫usin−1(u)du=(arcsin은미분가능)=2(sin−1u21u2−∫1−u2121u2du)=u2sin−1u−∫1−u2u2du=u2sin−1u+∫1−u2−1+1−u2du=xsin−1x−∫1−u21du+∫1−u2du=xsin−1x−sin−1x+∫1−u2du
∫1−u2du,(u=sinθ,du=cosθdθ)=∫cos2θdθ=21∫1+cos2θdθ=21θ+21∫cos2θdθ=21θ+41sin2θ=21sin−1u+21sinθcosθ=21sin−1u+21u1−u2
∫arcsin(x)dx=xsin−1x−sin−1x+∫1−u2du=xsin−1x−sin−1x+21sin−1u+21u1−u2=xsin−1x−sin−1x+21sin−1x+21x1−x=(sin−1x)(x−21)+21x(1−x)+C
79. ∫arctan(x)dx
∫arctan(x)dx(y=arctan(x),x=tan(y),dx=sec2ydy)=∫ysec2ydy(부분적분)=ytan(y)−∫tan(y)dy=xarctanx+ln∣cosy∣+C=xarctanx+ln∣1+x21∣+C
Alt.
∫arctan(x)dx(we know∫1+x21dx=arctan(x))=arctan(x)x−∫1+x2xdx(x2을치환)=xarctanx−21ln∣1+x2∣+C
80. ∫05f(x)dx
if x<=2, f(x)=10
if x>=2, f(x)=3x2−2
=∫02f(x)dx+∫25f(x)dx=∫0210dx+∫253x2−2dx=20+[x3−2x]25=20+(115−4)=131
Author: crazyj7@gmail.com