반응형
integral_br_91

91. x1+x4dx\int \frac{x}{1 + x^4} dx

x1+x4dxu=x2,du=2xdx=1211+u2du=12arctan(u)=12arctan(x2)+C \begin{aligned} &\int \frac{x}{1 + x^4} dx \\ &u=x^2, du=2xdx\\ &=\frac{1}{2}\int \frac{1}{1+u^2}du=\frac{1}{2}arctan(u)\\ &=\frac{1}{2}arctan(x^2)+C\\ \end{aligned}


92. exdx\int e^{\sqrt x} dx

exdxu=x,du=12xdxeu2udu=2ueudu=2(ueueu)=2ex(x1)+C \begin{aligned} &\int e^{\sqrt x} dx \\ & u=\sqrt x , du=\frac{1}{2\sqrt x} dx\\ &\int e^u 2udu=2\int ue^udu=2( ue^u-e^u )\\ &=2e^{\sqrt x}(\sqrt x -1 )+C \end{aligned}


93. 1csc(x)3dx\int \frac{1}{csc(x)^3} dx

1csc(x)3dx=sin3(x)dx=sin(x)(1cos2x)dx=sin(x)dxsin(x)cos2xdx(u=cos(x),du=sin(x)dx)=cos(x)+u2du=cos(x)+13u3+C=cos(x)+13cos3x+C \begin{aligned} &\int \frac{1}{csc(x)^3} dx \\ &=\int sin^3(x) dx=\int sin(x)(1-cos^2x)dx\\ &=\int sin(x)dx-\int sin(x)cos^2xdx\\ &(u=cos(x), du=-sin(x)dx)\\ &=-cos(x)+\int u^2du=-cos(x)+\frac{1}{3}u^3+C\\ &=-cos(x)+\frac{1}{3}cos^3x+C \end{aligned}


94. arcsinx1x2dx\int \frac{arcsin x}{\sqrt{1 - x^2}}dx

arcsinx1x2(11x2int>arcsin(x))u=arcsin(x),du=11x2dx=udu=12u2=(sin1x)22+C \begin{aligned} &\int \frac{arcsin x}{\sqrt{1 - x^2}} \\ &( \frac{1}{\sqrt{1-x^2}} -int-> arcsin(x) )\\ &u=arcsin(x), du=\frac{1}{\sqrt{1-x^2}}dx\\ &=\int u du = \frac{1}{2} u^2=\frac{(sin^{-1}x)^2}{2}+C \end{aligned}


95. 1+sin(2x)dx\int \sqrt{1 + sin(2x)} dx

1+sin(2x)dxu=sin(2x),du=2cos(2x)dx=1+u12cos(2x)du=121+u112sin2(x)du=12u112(u1)2du=12u12u2+4u1dunotwork \begin{aligned} &\int \sqrt{1 + sin(2x)} dx \\ &u=sin(2x) , du=2cos(2x)dx\\ &=\int \sqrt {1+u} \frac{1}{2cos(2x)}du =\frac 1 2 \int \sqrt {1+u} \frac {1}{1-2sin^2(x)}du \\ &=\frac 1 2 \int \sqrt u \frac{1}{1-2(u-1)^2}du =\frac 1 2 \int \sqrt u \frac{1}{-2u^2+4u-1}du \\ & not work \end{aligned}

1+sin(2x)dxu=1+sin(2x),du=2cos(2x)21+sin(2x)dxu21=sin(2x)=uucos(2x)du=u21(u21)2dut=u21,dt=2udu=12u1t2dt=121+t1t1+tdt=1211tdt=12(1t)1/2dt=12(2)(1t)1/2=1t=2u2=2(1+sin(2x))=1sin(2x)+C=cos2x+sin2x2sinxcos+C=cosxsinx+C \begin{aligned} &\int \sqrt{1 + sin(2x)} dx \\ &u=\sqrt{1 + sin(2x)}, du=\frac{2cos(2x)}{2\sqrt{1 + sin(2x)}}dx\\ &u^2-1=sin(2x)\\ &=\int u\frac{u}{cos(2x)} du = \int \frac{u^2}{\sqrt{1-(u^2-1)^2}}du\\ & t=u^2-1, dt=2udu\\ &=\frac{1}{2} \int \frac{u}{\sqrt{1-t^2}}dt=\frac{1}{2}\int \frac{\sqrt{1+t}}{\sqrt{1-t}\sqrt{1+t}}dt \\ &=\frac{1}{2}\int \frac{1}{\sqrt{1-t}}dt=\frac{1}{2}\int (1-t)^{-1/2}dt=\frac 1 2 (2)(1-t)^{1/2}\\ &=\sqrt{1-t}=\sqrt{2-u^2}=\sqrt{2-(1+sin(2x))}\\ &=\sqrt{1-sin(2x)}+C\\ &=\sqrt{cos^2x+sin^2x-2sinxcos}+C=|cosx-sinx|+C \end{aligned}
Alt.
1=sin2x+cos2x1+sin(2x)dx=sin2x+cos2x+2sinxcosxdx=(sinx+cosx)dx=cosx+sinx+C 1=sin^2x+cos^2x\\ \int \sqrt{1 + sin(2x)} dx =\int \sqrt {sin^2x+cos^2x+2sinxcosx} dx\\ =\int (sinx+cosx)dx=-cosx+sinx+C


96. x1/4dx\int x^{1/4} dx

x1/4dx=45x54+C \begin{aligned} &\int x^{1/4} dx \\ &=\frac 4 5 x^{\frac 5 4}+C \end{aligned}


97. 11+exdx\int \frac{1}{1 + e^x}dx

11+exdxu=1+ex,du=exdx=1u1u1du=1u+1u1du=lnu+lnu1=lnu1u=lnex1+ex+C=xln(1+ex)+C \begin{aligned} &\int \frac{1}{1 + e^x} dx \\ & u = 1+e^x, du=e^x dx \\ &=\int \frac {1}{u} \frac{1}{u-1}du=\int \frac{-1}{u}+\frac{1}{u-1}du \\ &=-ln|u|+ln|u-1|\\ &=ln|\frac{u-1}{u}|=ln|\frac{e^x}{1+e^x}|+C\\ &=x-ln(1+e^x)+C \end{aligned}


98. 1+exdx\int \sqrt{1 + e^x} dx

1+exdxu=1+ex,du=ex21+exdx=u2uexdu=2u21+1u21du=2(u11u2du)=2u2arctanh(u)+C=21+ex2tanh1(1+ex)+C=21+ex212ln1+1+ex11+ex+C=21+ex+ln11+ex1+1+ex+C \begin{aligned} &\int \sqrt{1 + e^x} dx \\ & u=\sqrt{1+e^x}, du=\frac{e^x}{2\sqrt{1+e^x}}dx\\ &=\int u \frac{2u}{e^x}du=2\int \frac {u^2-1+1}{u^2-1}du\\ &=2(u-\int \frac{1}{1-u^2} du)=2u-2arctanh(u)+C\\ &=2\sqrt{1+e^x}-2tanh^{-1}(\sqrt{1+e^x})+C\\ &=2\sqrt{1+e^x}-2\frac{1}{2}ln |{\frac{1+\sqrt{1+e^x}}{1-\sqrt{1+e^x}}}|+C\\ &=2\sqrt{1+e^x}+ln |{\frac{1-\sqrt{1+e^x}}{1+\sqrt{1+e^x}}}|+C\\ \end{aligned}
arctanhx=12ln1+x1xarctanh{x}=\frac{1}{2}\ln |\frac{1+x}{1-x}|


99. tan(x)sin(2x)dx\int \frac{\sqrt{tan(x)}}{sin(2x)}dx

tan(x)sin(2x)dx=tan(x)2sin(x)cos(x)dxu=tan(x),du=sec2x2tanxdx=u2sinxcosx2usec2xdu=2tan(x)cos(x)2sinxdu=du=u=tan(x)+C \begin{aligned} &\int \frac {\sqrt{tan(x)}}{sin(2x)}dx =\int \frac {\sqrt{tan(x)}}{2sin(x)cos(x)} dx\\ &u=\sqrt {tan(x)}, du=\frac{sec^2x}{2\sqrt{tanx}}dx \\ &=\int \frac {u}{2sinxcosx}\frac{2u}{sec^2x}du \\\\ &=\int \frac{2tan(x)cos(x)}{2sinx} du \\ &=\int du= u =\sqrt{tan(x)}+C \end{aligned}


100. 0π/211+sin(x)dx\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx

0π/211+sin(x)dxdiv cos=secxsecx+tanxdxu=secx+tanx,du=(secxtanx+sec2x)dx=secxu1secx(tanx+secx)du=1u2du=1u=1secx+tanx+C=cosx1+sinx+Ccosx1+sinx]0π/2=0(1)=1 \begin{aligned} &\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx \\ & \text{div cos} \\ &=\int \frac{secx}{secx+tanx}dx\\ & u=secx+tanx, du=(secxtanx+sec^2x )dx\\ &=\int \frac{secx}{u} \frac{1}{secx(tanx+secx)}du\\ &=\int \frac{1}{u^2}du = -\frac{1}{u}\\ &=-\frac{1}{secx+tanx}+C=-\frac{cosx}{1+sinx}+C \\ & -\frac{cosx}{1+sinx} ]_0^{\pi/2} =0-(-1)\\ &=1 \end{aligned}
Alt.
0π/211+sin(x)dx=0π/21sin(x)1sin2(x)dx=1sin(x)cos2(x)dx=sec2xsec(x)tan(x)dx=tan(x)sec(x)+C=tan(x)sec(x)]0π/2notsolve.=sin(x)1cos(x)=cos2(x)cos(x)(1+sin(x))=cos(x)1+sin(x) \begin{aligned} &\int_0^{\pi/2} \frac{1}{1 + sin(x)} dx \\ &=\int_0^{\pi/2} \frac{1-sin(x)}{1 - sin^2(x)} dx =\int \frac{1-sin(x)}{cos^2(x)} dx\\ &=\int sec^2x-sec(x)tan(x)dx=tan(x)-sec(x)+C\\ &=tan(x)-sec(x) ]_0^{\pi/2} not solve. \\ &=\frac{sin(x)-1}{cos(x)}=-\frac{cos^2(x)}{cos(x)(1+sin(x))}=-\frac{cos(x)}{1+sin(x)} \end{aligned}


101. sin(x)x+ln(x)cos(x)dx\int \frac {sin(x)} x + ln(x)cos(x) dx

sin(x)x+ln(x)cos(x)dx=sinxxdx+ln(x)cos(x)dx=sin(x)ln(x)cos(x)ln(x)dx+ln(x)cos(x)dx=sin(x)ln(x)+C \begin{aligned} &\int \frac{sin(x)}{x} + ln(x)cos(x) dx \\ &=\int \frac{sinx}{x}dx+\int ln(x)cos(x)dx\\ &=sin(x)ln(x)- \int cos(x)ln(x)dx+\int ln(x)cos(x)dx\\ &=sin(x)ln(x)+C \end{aligned}



Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [11-20]  (0) 2019.10.31
derivative100 [1-10]  (0) 2019.10.30
Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [71-80]  (1) 2019.10.24
반응형
integral_br_90

90. 0π2sin(x)3cos(x)3+sin(x)3dx\int_{0}^{\frac{\pi}{2}} \frac{sin(x)^3}{cos(x)^3 + sin(x)^3} dx

try some.
0π2sin(x)3cos(x)3+sin(x)3dxcos3x+sin3x=(cos2x+sin2x)(cosx+sinx)cosxsin2xcos2xsinx=cosx+sinxcosxsin2xcos2sinx=cosx(1sin2x)+sinx(1cos2x)u=cos(x),du=sin(x)dx=sinx(1u2)u3+sinx(1u2)(1sinx)duu=cos3x+sin3x,du/dx=3cos2x(sinx)+3sin2xcosx=sinx(1cos2x)cos3x+sin3xdx=1cot3x+1dx \begin{aligned} &\int_0^{\frac{\pi}{2}} \frac{sin(x)^3}{cos(x)^3 + sin(x)^3} dx\\ &cos^3x+sin^3x=(cos^2x+sin^2x)(cosx+sinx)-cosxsin^2x-cos^2xsinx\\ &=cosx+sinx-cosxsin^2x-cos^2sinx\\ &=cosx(1-sin^2x)+sinx(1-cos^2x) \\ & u = cos(x), du=-sin(x)dx\\ &=\int \frac{sinx(1-u^2)}{u^3+sinx(1-u^2)} (-\frac{1}{sinx})du\\ & u=cos^3x+sin^3x, du/dx=3cos^2x(-sinx)+3sin^2xcosx \\ &=\int \frac{sinx(1-cos^2x)}{cos^3x+sin^3x}dx \\ &=\int \frac{1}{cot^3x+1}dx \end{aligned}
sin3xcos3x+sin3xdx(cosx+sinx)3=cos3x+sin3x+3cos2xsinx+3cosxsin2x=cos3x+sin3x+3cosxsinx(cosx+sinx)=1cot3x+1dx=1(1+cot2)(cotx)cotx+1dx=1csc2xcotxcotx+1dx=tan3x1+tan3xdx(u=tanx,du=sec2xdx)=u31+u31sec2xdx \int \frac{sin^3x}{cos^3x+sin^3x} dx\\ (cosx+sinx)^3 = cos^3x+sin^3x+3cos^2xsinx+3cosxsin^2x\\ =cos^3x+sin^3x+3cosxsinx(cosx+sinx)\\ =\int \frac{1}{cot^3x+1}dx=\int \frac{1}{(1+cot^2)(cotx)-cotx+1}dx\\ =\int \frac{1}{csc^2xcotx-cotx+1}dx\\ =\int \frac{tan^3x}{1+tan^3x}dx (u=tan x, du=sec^2x dx)\\ =\int \frac{u^3}{1+u^3}\frac{1}{sec^2x}dx

fail… very hard…

Hint: tan x, x=arctan subs... sin3xcos3x+sin3xdx=tan3x1+tan3xdx,(x=tan1y,dx=11+y2dy)=y31+y311+y2dy=y3+11(1+y2)(1+y3)dy=1(1+y2)1(1+y2)(1+y3)dy=arctan(y)ay+b1+y2+cy2+dy+e1+y3dya+c=0,b+d=0,c+e=0,d+a=0,b+e=1=a=c,b=d,c=e,dc=0,c+c=1,c=d=b=a,c=d=(1/2),a=b=e=(1/2)(1/2)y+(1/2)1+y2+(1/2)y2+(1/2)y+(1/2)1+y3=arctan(y)(1/2)y+(1/2)1+y2+(1/2)y2+(1/2)y+(1/2)1+y3dy=arctan(y)121+y1+y2dy+12y2+y11+y3dy1+y1+y2dy=11+y2dy+y1+y2dy=arctan(y)+12ln1+y2R=y2+y11+y3=y21+y3dy+y11+y3dyy21+y3dy=13ln(1+y3)y3+1=(y+1)(y2y+1)y11+y3dy=ay+by2y+1+cy+1dya+c=0,bc+a=0,b+c=1,a=c,b=2cc=1/3,b=2/3,a=1/3y11+y3dy=(1/3)y+2/3y2y+1+1/3y+1dy=13y2y2y+1dy+131y+1dy=23y1232y2y+1dy+13lny+1y1232y2y+1dy=y12y2y+1dy321y2y+1dy=12ln(y2y+1)321y2y+1dy1y2y+1dy=1tan2x+1tanxsec2xdx=sec2xsec2xtanxdx=1cos2x1cosxsinxcos2xdx=11cosxsinxdx=22sin2xdx1y2y+1=c(ay+b)1+(ay+b)2=aca2y2+2aby+b2+1a/c=1,2b/c=1,(b2+1)/ac=1,a=c=2b(b2+1)=(4b2),3b2=1,b=±13b=13,a=c=231y2y+1=23231+(23y13)21y2y+1dy=23231+(23y13)2dy=23arctan(23y13)R=y2+y11+y3dy=13ln(1+y3)23(12ln(y2y+1)3arctan(23y13))+13ln(y+1)R=23ln(y+1)+23arctan(2y13)Q=arctan(y)121+y1+y2dy+12y2+y11+y3dy=arctan(y)12(arctan(y)+12ln1+y2)+12(y2+y11+y3dy)=12x14ln1+tan2x+12R=12x14ln1+tan2x+13ln1+tanx+13arctan(2tanx13) \begin{aligned} &\text{Hint: tan x, x=arctan subs... }\\ &\int \frac{sin^3x}{cos^3x+sin^3x} dx \\ &=\int \frac{tan^3x}{1+tan^3x}dx, \quad (x=tan^{-1}y, dx=\frac{1}{1+y^2}dy)\\ &=\int \frac{y^3}{1+y^3}\frac{1}{1+y^2}dy \\ &=\int \frac{y^3+1-1}{(1+y^2)(1+y^3)}dy \\ &=\int \frac{1}{(1+y^2)}-\int \frac{1}{(1+y^2)(1+y^3)}dy \\ &=arctan(y)-\int \frac{ay+b}{1+y^2}+\frac{cy^2+dy+e}{1+y^3} dy\\ & a+c=0, b+d=0, c+e=0, d+a=0, b+e=1\\ &=a=-c, b=-d, c=-e, d-c=0, -c+-c=1, c=d=-b=-a, \\ &c=d=-(1/2), a=b=e=(1/2)\\ &\frac{(1/2)y+(1/2)}{1+y^2}+\frac{-(1/2)y^2+(-1/2)y+(1/2)}{1+y^3}\\ &=arctan(y)-\int \frac{(1/2)y+(1/2)}{1+y^2}+\frac{-(1/2)y^2+(-1/2)y+(1/2)}{1+y^3} dy\\ &=arctan(y)-\frac 1 2\int \frac{1+y}{1+y^2}dy+\frac 1 2 \int \frac{y^2+y-1}{1+y^3} dy\\ &\int \frac{1+y}{1+y^2}dy =\int \frac 1 {1+y^2}dy+\int \frac y {1+y^2}dy\\ &=arctan (y)+\frac 1 2 ln|1+y^2|\\ &R=\int \frac{y^2+y-1}{1+y^3}=\int \frac {y^2}{1+y^3}dy+\int \frac {y-1}{1+y^3}dy\\ &\int \frac {y^2}{1+y^3}dy=\frac 1 3 ln(1+y^3)\\ &y^3+1=(y+1)(y^2-y+1)\\ &\int \frac {y-1}{1+y^3}dy=\int \frac{ay+b}{y^2-y+1}+\frac{c}{y+1}dy\\ &a+c=0, b-c+a=0, b+c=1, a=-c, b=2c\\ &c=1/3, b=2/3, a=-1/3\\ &\int \frac {y-1}{1+y^3}dy=\int \frac{(-1/3)y+2/3}{y^2-y+1}+\frac{1/3}{y+1}dy\\ &=-\frac 1 3 \int \frac{y-2}{y^2-y+1}dy+\frac 1 3 \int \frac{1}{y+1}dy\\ &=-\frac 2 3 \int \frac{y-\frac 1 2-\frac 3 2 }{y^2-y+1}dy+\frac 1 3 ln|y+1|\\ &\int \frac{y-\frac 1 2-\frac 3 2 }{y^2-y+1}dy=\int \frac{y-\frac 1 2}{y^2-y+1}dy-\frac 3 2 \int \frac{1}{y^2-y+1}dy \\ &=\frac 1 2 ln(y^2-y+1) -\frac 3 2 \int \frac{1}{y^2-y+1}dy \\ &\int \frac{1}{y^2-y+1}dy=\int \frac {1}{tan^2x+1-tanx}sec^2xdx\\ &=\int \frac {sec^2x}{sec^2x-tanx}dx=\int \frac {\frac 1 {cos^2x}}{\frac{1-cosxsinx}{cos^2x}}dx=\int \frac 1 {1-cosxsinx}dx\\ &=\int \frac{2}{2- sin2x}dx\\ &\frac{1}{y^2-y+1}=c\frac {(ay+b)'}{1+(ay+b)^2}=\frac{ac}{a^2y^2+2aby+b^2+1}\\ &a/c=1, 2b/c=-1, (b^2+1)/ac=1, a=c=-2b\\ &(b^2+1)=(4b^2), 3b^2=1, b=\pm \frac 1 {\sqrt{3}} \\ &b=-\frac 1 {\sqrt 3}, a=c=\frac 2 {\sqrt 3}\\ &\frac{1}{y^2-y+1}=\frac 2 {\sqrt 3}\frac{\frac 2 {\sqrt 3}}{1+(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})^2}\\ &\int \frac{1}{y^2-y+1}dy=\frac 2 {\sqrt 3}\int \frac{\frac 2 {\sqrt 3}}{1+(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})^2} dy\\ &=\frac 2 {\sqrt 3}arctan(\frac 2 {\sqrt 3}y-\frac 1 {\sqrt 3})\\ & R=\int \frac{y^2+y-1}{1+y^3} dy = \frac1 3 ln(1+y^3)-\frac 2 3 ( \frac 1 2 ln(y^2-y+1)-\sqrt 3 arctan(\frac 2 {\sqrt 3} y-\frac 1 {\sqrt 3}) ) +\frac 1 3 ln(y+1)\\ &R=\frac 2 3 ln (y+1)+\frac 2 {\sqrt 3} arctan( \frac{2y-1}{\sqrt 3})\\ & \therefore Q=arctan(y)-\frac 1 2\int \frac{1+y}{1+y^2}dy+\frac 1 2 \int \frac{y^2+y-1}{1+y^3} dy \\ &=arctan(y)-\frac 1 2 ( arctan (y)+\frac 1 2 ln|1+y^2|)\\ &+\frac 1 2 ( \int \frac{y^2+y-1}{1+y^3} dy )\\ &=\frac 1 2 x-\frac 1 4 ln|1+tan^2x|+\frac 1 2 R\\ &=\frac 1 2 x-\frac 1 4 ln|1+tan^2x|+\frac{1}{3}ln|1+tanx|+\frac 1 {\sqrt 3}arctan(\frac {2tanx-1}{\sqrt 3}) \end{aligned}\\
이렇게라도 해봤는데… 답이 안나옴…
답은 pi/4 라고 하니, 알아서 도전바람…
끈기 있게 다시 시도…

sin3xcos3x+sin3xdx=tan3x1+tan3xdx,(x=tan1y,dx=11+y2dy)=y31+y311+y2dy=y3(1+y2)(1+y3)dy=y3(1+y)(1+y2)(1y+y2)dyay+1+by+cy2+1+dy+ey2y+1=(a+b)y2+(b+c)y+(a+c)y3+y2+y+1+dy+ey2y+1y4(a+b+d)=0,y3(b+cab+e+d=1),y2(a+cbc+a+b+e+d)=0,y(ac+b+c+e+d)=0,a+c+e=0a+c+e=0,a+b+e+d=0,2a+e+d=0,a+c+d+e=1,a+b+d=0b+d=a,2a+e=0,e=2a,c=3a,d=4a,a3a4a+2a=1a=1/6,c=1/2,e=1/3,d=2/3,b=1/2Q=1/6y+1+(1/2)y+(1/2)y2+1+(2/3)y+(1/3)y2y+1dy=16ln(y+1)12y1y2+1dy+132y1y2y+1dy=16ln(y+1)12yy2+1dy+121y2+1dy+13ln(y2y+1)=16ln(y+1)14ln(y2+1)+12arctan(y)+13ln(y2y+1)x= 0 to pi/2 , y=0 to inf. y=tan(x)=12x+112(4ln(y2y+1)2ln(y+1)3ln(y2+1))=12x+112ln((y2y+1)4(y+1)2(y2+1)3)(x=0,thenQ=0)(x=π/2,thenQ=π/4,(limylnO(y8)O(y8)=ln1=0))Q=π4Q=12x+112ln((y2y+1)4(y+1)2(y2+1)3)=12x+112ln((1+tan2xtanx)4(1+tanx)2(1+tan2x)3)=12x+112ln((sec2xtanx)4(1+tanx)2(secx)6)=12x+16ln((sec2xtanx)2(1+tanx)(secx)3)=12x+13ln(1cosxsinxcos2x)16ln(cosx+sinxcos4x)=12x+13ln(1cosxsinx)23ln(cosx)16ln(cosx+sinx)+23ln(cosx)=12x+13ln(1cosxsinx)16ln(cosx+sinx)+C \begin{aligned} &\int \frac{sin^3x}{cos^3x+sin^3x} dx \\ &=\int \frac{tan^3x}{1+tan^3x}dx, \quad (x=tan^{-1}y, dx=\frac{1}{1+y^2}dy)\\ &=\int \frac{y^3}{1+y^3}\frac{1}{1+y^2}dy \\ &=\int \frac{y^3}{(1+y^2)(1+y^3)}dy =\int \frac{y^3}{(1+y)(1+y^2)(1-y+y^2)}dy\\ &\frac{a}{y+1}+\frac{by+c}{y^2+1}+\frac{dy+e}{y^2-y+1}=\frac{ (a+b)y^2+(b+c)y+(a+c) }{y^3+y^2+y+1}+\frac{dy+e}{y^2-y+1}\\ &y^4( a+b +d)=0, y^3(b+c-a-b+e+d=1), y^2(a+c-b-c+a+b+e+d)=0,\\ &y(-a-c+b+c+e+d)=0, a+c+e=0\\ &a+c+e=0, -a+b+e+d=0, 2a+e+d=0, -a+c+d+e=1, a+b+d=0\\ &b+d=-a, -2a+e=0, e=2a, c=-3a, d=-4a, -a-3a-4a+2a=1\\ &a=-1/6, c=1/2, e=-1/3, d=2/3, b=-1/2\\ &Q=\int \frac{-1/6}{y+1}+\frac{(-1/2)y+(1/2)}{y^2+1}+\frac{(2/3)y+(-1/3)}{y^2-y+1} dy\\ &=-\frac 1 6 ln(y+1)- \frac 1 2 \int \frac{y-1}{y^2+1}dy+\frac 1 3 \int \frac{2y-1}{y^2-y+1} dy\\ &=-\frac 1 6 ln(y+1)- \frac 1 2 \int \frac y {y^2+1}dy +\frac 1 2 \int \frac 1 {y^2+1}dy+\frac 1 3 ln(y^2-y+1) \\ &=-\frac 1 6 ln(y+1)-\frac 1 4 ln(y^2+1)+\frac 1 2 arctan(y)+\frac 1 3 ln(y^2-y+1) \\ &\text{x= 0 to pi/2 , y=0 to inf. y=tan(x)}\\ &=\frac 1 2 x +\frac 1 {12} ( 4ln(y^2-y+1)-2ln(y+1)-3ln(y^2+1) )\\ &=\frac 1 2 x +\frac 1 {12} ln ( \frac{ (y^2-y+1)^4}{(y+1)^2(y^2+1)^3} ) \\ & (x=0, then Q=0 ) \\ & (x=\pi/2, then Q= \pi/4 , ( \lim_{y\to\infty} ln \frac{O(y^8)}{O(y^8)}=ln1=0) )\\ & \therefore Q=\frac {\pi}{4}\\ &Q=\frac 1 2 x +\frac 1 {12} ln ( \frac{ (y^2-y+1)^4} {(y+1)^2(y^2+1)^3} )\\ &=\frac 1 2 x +\frac 1 {12} ln( \frac{(1+tan^2x-tanx)^4}{(1+tanx)^2(1+tan^2x)^3})\\ &=\frac 1 2 x +\frac 1 {12} ln( \frac{(sec^2x-tanx)^4}{(1+tanx)^2(secx)^6})\\ &=\frac 1 2 x +\frac 1 {6} ln( \frac{(sec^2x-tanx)^2}{(1+tanx)(secx)^3})\\ &=\frac 1 2 x +\frac 1 {3} ln(\frac{1-cosxsinx}{cos^2x})-\frac 1 6 ln(\frac{cosx+sinx}{cos^4x})\\ &=\frac 1 2 x + \frac 1 3 ln(1-cosxsinx)-\frac 2 3ln(cosx)-\frac 1 6 ln(cosx+sinx)+\frac 2 3 ln(cosx)\\ &=\frac 1 2 x +\frac 1 3 ln(1-cosxsinx)-\frac 1 6 ln(cosx+sinx)+C\\ \end{aligned}

https://math.stackexchange.com/questions/198083/int-frac-sin3x-sin3x-cos3x

Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

derivative100 [1-10]  (0) 2019.10.30
Integral100 [91-100]  (1) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [71-80]  (1) 2019.10.24
Integral100 [61-70]  (0) 2019.10.23
반응형
integral_br_81

81. sin(1x)x3dx\int \frac{sin(\frac{1}{x})}{x^3}dx

sin(1x)x3dx(u=1x,du=x2dx)=sin(u)x3(x2)du=sin(u)x1du=usin(u)du=(u(cos(u))(sin(u)))=ucos(u)sin(u)=1xcos(1x)sin(1x)+C \begin{aligned} &\int \frac{sin(\frac{1}{x})}{x^3}dx \\ &(u=\frac{1}{x}, du=-x^{-2}dx)\\ &=\int sin(u)x^{-3}(-x^2)du=-\int sin(u)x^{-1}du=-\int u \sin(u)du\\ &=-( u(-cos(u))-(-sin(u)) )=ucos(u)-sin(u)\\ &= \frac{1}{x} cos( \frac{1}{x})-sin(\frac{1}{x})+C \end{aligned}


82. x1x41dx\int \frac{x-1}{x^4-1}dx

x1x41dx=x1(x2+1)(x+1)(x1)dx=1(x2+1)(x+1)dx1(x2+1)(x+1)=ax+bx2+1+cx+1numerator:1=(c+a)x2+(b+a)x+c+ba=c,b=a,c+b=1,c=(1/2),b=(1/2),a=(1/2)=(1/2)x+(1/2)x2+1dx+(1/2)x+1dx=12xx2+1dx+121x2+1dx+121x+1dx(u=x2+1,du=2xdx)(xx2+1dx=121udu=12lnu)=14ln(x2+1)+12tan1x+12lnx+1+C \begin{aligned} &\int \frac{x-1}{x^4-1}dx \\ &=\int \frac{x-1}{(x^2+1)(x+1)(x-1)}dx= \int \frac{1}{(x^2+1)(x+1)}dx\\ & \frac{1}{(x^2+1)(x+1)} = \frac{ax+b}{x^2+1}+ \frac{c}{x+1}\\ & numerator:1= (c+a)x^2+(b+a)x+c+b\\ & a=-c, b=-a, c+b=1, c=(1/2), b=(1/2), a=(-1/2)\\ &=\int \frac{(-1/2)x+(1/2)}{x^2+1}dx+\int \frac{(1/2)}{x+1} dx\\ &=-\frac{1}{2}\int \frac{x}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x^2+1}dx+\frac{1}{2}\int \frac{1}{x+1} dx \\ & (u=x^2+1, du=2xdx)\\ & (\int \frac{x}{x^2+1}dx=\frac{1}{2}\int \frac{1}{u}du=\frac{1}{2}ln|u|)\\ &=-\frac{1}{4}ln(x^2+1)+\frac{1}{2}tan^{-1}x+\frac{1}{2}ln|x+1|+C \end{aligned}


83. 1+(x14x)2dx\int \sqrt{1+(x-\frac{1}{4x})^2}dx

1+(x14x)2dx(u=x14x,du=(1+14x2)dx,u=4x214x)=1+u24x24x2+1du=1+u2(111+4x2)dunotsolve...x2+116x2+12=(x+14x)2dx=x+14xdx=12x2+14lnx+C \begin{aligned} &\int \sqrt{1+(x-\frac{1}{4x})^2}dx \\ &(u=x-\frac{1}{4x}, du=(1+\frac{1}{4x^2})dx, u=\frac{4x^2-1}{4x})\\ &=\int \sqrt{1+u^2}\frac{4x^2}{4x^2+1}du=\int \sqrt{1+u^2}(1-\frac{1}{1+4x^2})du\\ & not solve...\\ & \int \sqrt{ x^2+\frac{1}{16x^2}+\frac{1}{2} }=\int \sqrt{ (x+\frac{1}{4x})^2} dx=\int x+\frac{1}{4x} dx\\ &=\frac{1}{2}x^2+\frac{1}{4}ln|x|+C \end{aligned}


84. etan(x)1sin(x)2dx\int \frac{e^{tan(x)}}{1-sin(x)^2}dx

etan(x)1sin(x)2dx(u=tan(x),du=sec2(x)dx)eusec2xdx=eudu=eu=etan(x)+C \begin{aligned} &\int \frac{e^{tan(x)}}{1-sin(x)^2} dx \\ &(u=tan(x), du=sec^2(x)dx) \\ &\int e^u sec^2xdx=\int e^udu=e^u\\ &=e^{tan(x)}+C \end{aligned}


85. arctan(x)x2dx\int \frac{arctan(x)}{x^2}dx

arctan(x)x2dxD(arctan(x))=11+x2,x2dx=x1=arctan(x)(x1)11+x2(x1)dx=arctan(x)(x1)+1x(1+x2)dx=arctan(x)x+cx+ax+bx2+1dx(a+c)x2+bx+c=1,c=1,b=0,a=1=arctan(x)x+1xdxxx2+1dx=arctan(x)x+lnx12ln(x2+1)+C=arctan(x)x12ln(1+x2x2)+C \begin{aligned} &\int \frac{arctan(x)}{x^2}dx \\ & D(arctan(x)) = \frac{1}{1+x^2} , \int x^{-2} dx=-x^{-1}\\ &=arctan(x)(-x^{-1})-\int \frac{1}{1+x^2}(-x^{-1})dx\\ &=arctan(x)(-x^{-1})+\int \frac{1}{x(1+x^2)}dx\\ &=-\frac{arctan(x)}{x}+\int \frac{c}{x}+\frac{ax+b}{x^2+1}dx\\ &(a+c)x^2+bx+c=1, c=1, b=0, a=-1\\ &=-\frac{arctan(x)}{x}+\int \frac{1}{x}dx-\int \frac{x}{x^2+1}dx\\ &=-\frac{arctan(x)}{x}+ln|x|-\frac{1}{2}ln(x^2+1)+C\\ &=-\frac{arctan(x)}{x}-\frac{1}{2}ln(\frac{1+x^2}{x^2})+C\\ \end{aligned}


86. arctan(x)1+x2dx\int \frac{arctan(x)}{1+x^2}dx

arctan(x)1+x2dx=arctan(x)arctan(x)11+x2arctan(x)dx=arctan2(x)2+C=(tan1x)22+C \begin{aligned} &\int \frac{arctan(x)}{1+x^2} dx \\ &= arctan(x)arctan(x)-\int \frac{1}{1+x^2} arctan(x)dx\\ &=\frac{arctan^2(x)}{2}+C=\frac{(tan^{-1}x)^2}{2}+C \end{aligned}


87. ln(x)2dx\int ln(x)^2dx

ln(x)2dx=ln(x)2(x)2ln(x)(1/x)xdx=xln(x)22ln(x)dx=xln(x)22(xlnxx)=x(ln(x)22lnx+2)+C \begin{aligned} &\int ln(x)^2dx \\ &=ln(x)^2(x)-\int 2ln(x)(1/x)xdx\\ &=xln(x)^2-2\int ln(x) dx = xln(x)^2-2(xln|x|-x)\\ &=x( ln(x)^2-2ln|x|+2) +C \end{aligned}


88. x2+4x2dx\int \frac{\sqrt{x^2+4}}{x^2}dx

x2+4x2dxu=x2+4,du=xx2+4dx=x2+4(1x)xx2+4(1x)dx=x2+4x+1x2+4dx=x2+4x+12arctan(x2)+C \begin{aligned} &\int \frac{\sqrt{x^2+4}}{x^2} dx \\ &u=\sqrt{x^2+4}, du=\frac{x}{\sqrt{x^2+4}}dx\\ &=\sqrt{x^2+4}(-\frac{1}{x})-\int \frac{x}{\sqrt{x^2+4}} (-\frac{1}{x})dx\\ &=-\frac{\sqrt{x^2+4}}{x}+\int \frac{1}{x^2+4}dx\\ &=-\frac{\sqrt{x^2+4}}{x}+\frac{1}{2}arctan({\frac{x}{2}})+C\\ \end{aligned}

??? same???

Alt. x=2tanθx=2tan\theta
dx=2sec2θdθ,R.T.angle=θ,a=1,o=x2,h=1+x24=2secθ4tan2θ2sec2θdθ=sec3θcsc2θcos2θdθ=1cosθsin2θdθ=cos2θ+sin2θcosθsin2θdθ=cotθcscθdθ+secθdθ=cscθ+lnsecθ+tanθ=1+x242x+ln1+x24+x2=x2+4x+ln12(x+4+x2)+C=x2+4x+lnx+4+x2+C2 dx=2sec^2\theta d\theta , R.T. angle=\theta, a=1, o=\frac{x}{2}, h=\sqrt{1+\frac{x^2}{4}}\\ =\int \frac{2sec\theta}{4tan^2\theta} 2sec^2\theta d\theta=\int sec^3 \theta csc^2\theta cos^2\theta d\theta \\ =\int \frac{1}{cos \theta sin^2 \theta } d\theta=\int \frac{cos^2 \theta+sin^2 \theta }{cos \theta sin^2 \theta } d\theta \\ =\int cot\theta csc \theta d\theta+\int sec \theta d\theta \\ = -csc \theta + ln |sec \theta+tan\theta| \\ =- \sqrt{1+\frac{x^2}{4}}\frac{2}{x}+ln| \sqrt{1+\frac{x^2}{4}}+\frac{x}{2}| \\ =-\frac{\sqrt{x^2+4}}{x}+ln|\frac{1}{2}(x+\sqrt{4+x^2})|+C\\ =-\frac{\sqrt{x^2+4}}{x}+ln|x+\sqrt{4+x^2}|+C_2\\


89. x+4xdx\int \frac{\sqrt{x + 4}}{x} dx

x+4xdxu=x+4,du=12udx=uu242udu=2u24+4u24du=2(du+41u24du)=2u+81/4u2+1/4u+2du=2u+2lnu22lnu+2=2x+4+2lnx+42x+4+2+C \begin{aligned} &\int \frac{\sqrt{x + 4}}{x} dx \\ & u=\sqrt{x+4}, du=\frac{1}{2u}dx \\ &=\int \frac{u}{u^2-4} 2u du=2 \int \frac{u^2-4+4}{u^2-4} du\\ &=2( \int du +4\int \frac{1}{u^2-4} du)=2u+8\int\frac{1/4}{u-2}+\frac{-1/4}{u+2} du\\ &=2u+2ln|u-2|-2ln|u+2|\\ &=2\sqrt{x+4}+2ln|\frac{\sqrt{x+4}-2}{\sqrt{x+4}+2}|+C \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [91-100]  (1) 2019.10.27
Integral100 [90]  (2) 2019.10.27
Integral100 [71-80]  (1) 2019.10.24
Integral100 [61-70]  (0) 2019.10.23
Integral100 [51-60]  (1) 2019.10.22
반응형
crawl1

Crawling 크롤링

파이썬으로 간단하게 Web 페이지 크롤링하기.

인터넷 상의 자료들을 프로그래밍을 하여 Web URL로 받아 분석하여 필요한 정보를 가공하는 작업.

1단계 HTML 그대로 받기

HTML이 있는 URL 주소를 입력하면 대부분 그대로 보이는 페이지를 긁어올 수 있다. (로그인 인증이 필요하거나 특정 조건이 필요한 경우는 고급 방식을 사용해야 한다.)

### daum 기사 수집  
import urllib.request  
from bs4 import BeautifulSoup  
  
url = 'https://m.media.daum.net/m/media/economic'  
  
conn = urllib.request.urlopen(url)  
# art_eco = conn.read()  
soup = BeautifulSoup(conn, "html.parser")  
  
# print(soup)  
with open('output.txt', 'wt', encoding='utf8') as f:  
    f.write(str(soup))

print로 출력할 수도 있지만 보통 내용이 많아 파일로 저장해서 분석한다.
스트링 검색으로 원하는 부분을 잘 찾는다.

2단계 HTML 파싱하여 필요한 부분만 뽑기

HTML 내용에서 일부만을 발췌하고 싶다면 HTML 구조를 파악하여 어떻게 필요한 부분만을 select 할 수 있는 방법을 알아야 한다. BeautifulSoup 모듈을 사용하면 그나마 쉽게(?) 추출할 수 있다.
보통 홈페이지의 HTML은 시일이 지나면 업데이트되어 구조가 변경될 경우 기존 select 규칙이 안먹힌다. 그 때 그 때 업데이트를 해주어야 정상적으로 동작할 것이다. (아래 예제가 안돌아가면 스스로 업데이트하길 바란다.)

파싱할 텍스트

<strong class="tit_thumb">  
<em class="emph_g"><a class="link_txt #series_title @2" href="/m/media/series/1366383">글로벌포스트</a></em>  
<a class="link_txt #article @2" href="http://v.media.daum.net/v/20191023082142459?f=m">中 암호화폐 투자자 "한국 시장은 고사 상태"</a>  
</strong>  
</li>  
<li>  
<a class="link_thumb #series_thumb @3" href="http://v.media.daum.net/v/20191023070002158?f=m">  
<img alt='[김현석의 월스트리트나우] "트럼프는 워런을 이기고 재선된다"' class="thumb_g" src="//img1.daumcdn.net/thumb/S176x136ht.u/?fname=https%3A%2F%2Fimg1.daumcdn.net%2Fnews%2F201910%2F23%2Fked%2F20191023070003367kwmc.jpg&amp;scode=media"/>  
</a>  
<strong class="tit_thumb">  
<em class="emph_g"><a class="link_txt #series_title @3" href="/m/media/series/465092">월스트리트나우</a></em>  
<a class="link_txt #article @3" href="http://v.media.daum.net/v/20191023070002158?f=m">"트럼프는 워런을 이기고 재선된다"</a>  
</strong>

태그로 가져오기

위에서 a태그들을 모두 가져와서 출력해 보자.
find_all은 리스트 타입으로 리턴한다. 앞에서부터 발견된 해당 태그들을 리스트 아이템으로 append 추가한다.
보통 너무 많이 출력되서 찾기가 힘들 정도이다. 하나씩 보자.

arta = soup.find_all("a")  
print(arta)

출력 결과

[<a class="link_daum #logo" href="http://m.daum.net/" id="daumLogo">
<img alt="Daum" height="25" src="//t1.daumcdn.net/media/news/news2016/m640/tit_daum.png" width="24"/>
</a>, <a class="tit_service #service_news" href="/m/media/" id="kakaoServiceLogo">뉴스</a>, <a class="link_relate link_entertain #service_enter" href="/m/entertain/">연예</a>, <a class="link_relate link_sport #service_sports" href="https://m.sports.media.daum.net/m/sports/">스포츠
                    </a>, <a class="link_search #GNB#default#search" href="http://mtop.search.daum.net/" id="link_search">
<span class="ico_media ico_search">통합검색</span>
</a>, <a class="link_gnb #media_home" href="/m/media/"><span class="txt_gnb">홈</span></a>, <a class="link_gnb #media_society" href="/m/media/society"><span class="txt_gnb">사회</span></a>, <a class="link_gnb #media_politics" href="/m/media/politics"><span class="txt_gnb">정치</span></a>, <a class="link_gnb #media_economic" href="/m/media/economic"><span class="screen_out">선택됨</span><span class="txt_gnb">경제</span></a>, <a class="link_gnb #media_foriegn" href="/m/media/foreign"><span class="txt_gnb">국제</span></a>, <a class="link_gnb #media_culture" href="/m/media/culture"><span class="txt_gnb">문화</span></a>, <a class="link_gnb #media_digital" href="/m/media/digital"><span class="txt_gnb">IT</span></a>, <a class="link_gnb #media_ranking" href="/m/media/ranking"><span class="txt_gnb">랭킹</span></a>, <a class="link_gnb #media_series" href="/m/media/series"><span class="txt_gnb">연재</span></a>, <a class="link_gnb #media_photo" href="/m/media/photo"><span class="txt_gnb">포토</span></a>, <a class="link_gnb #media_tv" href="/m/media/tv"><span class="txt_gnb">TV</span></a>, <a class="link_gnb #media_1boon" href="/m/media/1boon"><span class="txt_gnb">1boon</span></a>, <a class="link_gnb #media_exhibition" href="https://gallery.v.daum.net/p/home"><span class="txt_gnb">사진전</span></a>, <a class="link_thumb #article_thumb" href="http://v.media.daum.net/v/20191022192703507?f=m">
<img alt='WTO 개도국 지위 간담회 농민 반발로 파행..정부 "곧 결론낼 것"' class="thumb_g" src="//img1.daumcdn.net/thumb/S720x340ht.u/?fname=https%3A%2F%2Fimg1.daumcdn.net%2Fnews%2F201910%2F22%2Fyonhap%2F20191022192703823dgcc.jpg&amp;scode=media"/>
</a>, <a class="link_cont #article_main" href="http://v.media.daum.net/v/20191022192703507?f=m">
<strong class="tit_thumb">WTO 개도국 지위 간담회 농민 반발로 파행..정부 "곧 결론낼 것"</strong>
<span class="info_thumb"><span class="txt_cp">연합뉴스</span><span class="ico_news ico_reply">댓글수</span>25</span>
</a>, <a class="link_relate #article_sub @1" href="http://v.media.daum.net/v/20191022201613686?f=m">

클래스와 ID에 주목하라

보통 태그로 가져오게되면 여러군데 있는 정보들이 마구 섞여서 나온다. index 번호를 잘 찾는다 해도 금방 변경될 수 있다.
그나마 좀 나은 방법은 일반적으로 태그들의 속성이나 클래스를 두어 카테고리화하여 작성한 경우가 많으므로 그 정보들로 데이터를 잘 필터링해야 한다.
클래스로 검색하려면 soup.find 또는 find_all에서 class_=“클래스명” 지정해 주고, ID로 검색하려면 파라미터에 id=“아이디” 를 추가한다.
위 a 태그들 중에 기사 제목같은 것만 뽑고 싶은데, 클래스를 잘 보면 link_news 라고 된 부분만 추출해 보자.

arta = soup.find_all("a", class_='link_news')  
print(arta)

output

[<a class="link_news #RANKING#popular_female#article @1" href="http://v.media.daum.net/v/20191022040803988?f=m">
<em class="txt_age emph_g2">
<span class="num_news age20">20</span>대<span class="txt_arr">↓</span> </em>
                                        심상찮은 경제 2위 중국·4위 독일.. R의 공포 급속 확산
                                    </a>, <a class="link_news #RANKING#popular_female#article @2" href="http://v.media.daum.net/v/20191023143008200?f=m">
<em class="txt_age emph_g2">
<span class="num_news age30">30</span>대                                        </em>
                                        '내일채움공제' 첫 5년 만기자 탄생..중기부 "정책 확대·개선하겠다"
                                    </a>, <a class="link_news #RANKING#popular_female#article @3" href="http://v.media.daum.net/v/20191023161257078?f=m">
<em class="txt_age emph_g2"> 

어느 정도 뽑히면 이제 내부를 탐색

a 태그중 link_news 클래스 속성이 있는 것을 다 뽑았다. 여기서 딱 제목만 뽑고 싶은데…
태그내에 있는 텍스트만 추출하면?
a태그 하나씩 가져와서 텍스트만 출력하는데 텍스트 앞뒤 공백을 제거하자.

arta = soup.find_all("a", class_='link_news')  
for art in arta:  
    print(art.text.strip())

output

20대↓ 
                                        심상찮은 경제 2위 중국·4위 독일.. R의 공포 급속 확산
30대                                        
                                        '내일채움공제' 첫 5년 만기자 탄생..중기부 "정책 확대·개선하겠다"
40대                                        
                                        액상형 전자담배 '사용자제→중단' 권고..청소년 즉시중단

거의 다 나온 것 같은데, 쓸데없는 스트링이 더 있었다. 잘 보면 em 태그에 있는 것이 연령대 스트링이 추가된 것이다. 뒤에 기사제목이 별도의 태그가 없어서 태그로 추출도 어렵다.
이때는 내용들을 분해해서 list로 받아 index를 찾으면 된다. 하위 개체들 중 마지막이 해당 텍스트가 될 것이다.

arta = soup.find_all("a", class_='link_news')  
for art in arta:  
    print( art.contents[-1].strip() )

output

'내일채움공제' 첫 5년 만기자 탄생..중기부 "정책 확대·개선하겠다"
환자 1명이 '졸피뎀' 1만1456정 구입..국내 처방환자 176만명
액상형 전자담배 '사용자제→중단' 권고..청소년 즉시중단
돌아온 미세먼지의 나날들..'잿빛 하늘' 내년 봄까지 이어질 듯
구조조정 나선 LG디스플레이, 올해 적자 1조원 넘어설 듯
정부 "'개도국 포기' 논의" 농민들 불렀지만..시작부터 '아수라장'
경영난 위워크, 결국 손정의 품으로.."100억달러 더 투입"
이탄희 "검찰 전관예우 더 심각, 전화 한통 값 수천만원"

깔끔하게 제목만 뽑을 수 있었다.

좀 더 편하게 찾을 수는 없을까?

브라우저의 개발자 모드(F12 키를 누르면 나온다.)에서 원하는 텍스트를 찾아서 검사 또는 element 보기를 하면 해당 텍스트의 상위 태그 및 속성 정보들을 모두 볼 수 있다. 오른쪽창에서 해당 텍스트 위치가 있는 소스로 이동한다. 하단보면 태그 구조가 나온다.
이를 기반으로 필터링 규칙을 잘 잡으면 빨리 찾을 수 있을 것이다.
crawl1

위의 부분을 한 번 찾아보려고 시도했는데…

subnews = soup.find("div", "section_sub")  
realnews = subnews.find("div", "box_realtime")  
print(realnews)  
  
news = soup.find("span", "txt_g")  
print(news)

결과는

<div class="box_g box_realtime">
<h3 class="tit_g">실시간 주요 경제 뉴스</h3>
<ul category="economic" class="list_thumb">
</ul>
<a class="link_more #MAIN_NEWS#more" href="#none">더보기<span class="ico_news"></span></a>
</div>
None

안타깝게도 정보가 없다. 우리가 원하는 정보는 list_thumb 클래스ul 태그 내부인데 비어 있다.
실제로 이러한 경우가 종종 있다. 이 경우는 보통 html을 요청했을 때, javascript가 포함되어 브라우저에서 작동시켜야 내용이 채워지는 경우들이다. 따라서 html 자체만을 보는 것으로는 원하는 결과를 얻을 수 없다.

귀찮지만 이럴때는 다른 방식을 사용해야 한다.
가상의 브라우저를 만들어 JS를 구동시킨 결과를 파싱하면 되는 것이다.

다음화에서 계속…

Author: crazyj7@gmail.com

'Python' 카테고리의 다른 글

크롤링 BeautifulSoup 요약  (2) 2019.11.06
크롤링(Crawl) 2편  (2) 2019.10.27
인코딩에러 cp949  (1) 2019.10.02
ipynb와 py 양방향 전환  (2) 2019.09.30
ipynb 노트북 파일 형상관리  (1) 2019.09.27
반응형
integral_br_71

71. 1/(cbrt(x)+1)dx\int 1/(cbrt(x)+1)dx

1x3+1dx(u=x3,du=13x23dx=13x23dx=13u2dx)=3u2u+1du=3u21+1u+1du=3(u1)(u+1)u+1du+31u+1du=3(12u2u)+3lnu+1=32u23u+3lnu+1+C=32x323x3+3lnx3+1+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x}+1}dx \\ &(u=\sqrt[3]{x}, du=\frac{1}{3\sqrt[3]{x^2}}dx=\frac{1}{3}x^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u+1}du=3\int \frac{u^2-1+1}{u+1}du\\ &=3\int \frac{(u-1)(u+1)}{u+1}du+3\int\frac{1}{u+1}du \\ &=3(\frac{1}{2}u^2-u)+3ln|u+1|\\ &=\frac{3}{2}u^2-3u+3ln|u+1|+C\\ &=\frac{3}{2}\sqrt[3]{x}^2-3\sqrt[3]{x}+3ln|\sqrt[3]{x}+1|+C\\ \end{aligned}
Alt.
(u=x3+1,x=(u1)3,dx=3(u1)2du)=1u3(u1)2du=3u22u+1udu=3u2+(1/u)du=3(12u22u+lnu)=32(x3+1)26(x3+1)+3lnx3+1+C (u=\sqrt[3]{x}+1, x=(u-1)^3, dx=3(u-1)^2du)\\ =\int \frac{1}{u} 3(u-1)^2du\\ =3\int \frac{u^2-2u+1}{u} du=3\int u-2+(1/u) du\\ =3(\frac{1}{2}u^2-2u+ln|u|)\\ =\frac{3}{2}(\sqrt[3]{x}+1)^2-6(\sqrt[3]{x}+1)+3ln|\sqrt[3]{x}+1|+C


72. 1cbrt(x+1)dx\int \frac{1}{cbrt(x + 1)}dx

1x+13dx(u=x+13,du=13(x+1)23dx=13(x+1)23dx=13u2dx)=3u2udu=3udu=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &(u=\sqrt[3]{x+1}, du=\frac{1}{3\sqrt[3]{(x+1)^2}}dx=\frac{1}{3}(x+1)^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u}du=3\int u du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}
Alt.
(u=x+1)
1x+13dx=u13du=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &=\int u^{-\frac{1}{3}}du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}


73. (sin(x)+cos(x))2dx\int (sin(x)+cos(x))^2 dx

(sin(x)+cos(x))2dx=1+2sin(x)cos(x)dx=x+sin(2x)dx=x12cos(2x)+C \begin{aligned} &\int (sin(x)+cos(x))^2dx \\ &=\int 1+2sin(x)cos(x)dx=x+\int sin(2x) dx\\ &=x-\frac{1}{2}cos(2x)+C \end{aligned}


74. 2xln(1+x)dx\int 2xln(1+x) dx

2xln(1+x)dx=2xln(1+x)dx(ln쪽을 미분하는 방향으로 부분적분)=2(ln(1+x)12x211+x12x2dx)=ln(1+x)x2x21+xdx=ln(1+x)x2x21+11+xdx=ln(1+x)x2x1+11+xdx=ln(1+x)x212x2+xln(1+x)+C \begin{aligned} &\int 2xln(1+x) dx =2\int xln(1+x) dx\\ & \text{(ln쪽을 미분하는 방향으로 부분적분)}\\ &=2( ln(1+x)\frac{1}{2}x^2-\int \frac{1}{1+x}\frac{1}{2}x^2dx )\\ &= ln(1+x)x^2-\int \frac{x^2}{1+x}dx = ln(1+x)x^2-\int \frac{x^2-1+1}{1+x}dx\\ &= ln(1+x)x^2-\int x-1+\frac{1}{1+x}dx\\ &= ln(1+x)x^2-\frac{1}{2}x^2+x-ln(1+x)+C\\ \end{aligned}


75. 1/(x(1+sin2ln(x)))dx\int 1/(x(1+sin^2ln(x)))dx

1x(1+sin2ln(x))dx(u=ln(x),du=1xdx:1/xln(x).)=du1+sin2u:(sin,(),cos.sec,tan.)=sec2usec2u+tan2udu=sec2u1+2tan2udu,(t=tanu,dt=sec2udu)=dt1+2t2,(t=tanu,dt=sec2udu)=12arctan2t=12arctan(2tan(ln(x)))+C \begin{aligned} &\int \frac{1}{x(1+sin^2ln(x))} dx \\ &( u=ln(x), du=\frac{1}{x}dx : 1/x과 ln(x)에서 치환 착안.)\\ &=\int \frac{du}{1+sin^2u} : (sin에 대해 치환, 변환(반각)해보고, cos으로 나눠도 본다.\\ & sec, tan을 만들 수 있다는 것을 착안.)\\ &=\int \frac{sec^2u}{sec^2u+tan^2u}du\\ &=\int \frac{sec^2u}{1+2tan^2u}du, (t=tanu, dt=sec^2udu)\\ &=\int \frac{dt}{1+2t^2}, (t=tanu, dt=sec^2udu)\\ &=\frac{1}{\sqrt{2}}arctan {\sqrt{2}t}=\frac{1}{\sqrt{2}}arctan({\sqrt{2} tan(ln(x))})+C \end{aligned}


76. sqrt((1x)/(1+x))dx\int sqrt((1-x)/(1+x))dx

Try
1x1+xdx(전체치환? 일부치환. 분자분모곱, pm 등)(u=1x1+x,du=121+x1x1x+1+x12x+x2dx)(du=121+x1x2(1x)2dx=1u(1x)2dx)(u2=1x1+x,xu2+x=1u2,x=1u21+u2)=u2(1x)2du=u2(11u21+u2)2du=u2(2u21+u2)2du=4u6(11+u2)2du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(\text{전체치환? 일부치환. 분자분모곱, pm 등})\\ &( u = \sqrt{\frac{1-x}{1+x}}, du=\frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{1-x+1+x}{1-2x+x^2}dx)\\ &( du = \frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{2}{(1-x)^2}dx=\frac{1}{u(1-x)^2}dx)\\ &(u^2=\frac{1-x}{1+x}, xu^2+x=1-u^2, x=\frac{1-u^2}{1+u^2} )\\ &=\int u^2(1-x)^2 du =\int u^2(1-\frac{1-u^2}{1+u^2})^2du\\ &=\int u^2(\frac{2u^2}{1+u^2})^2 du = \int 4u^6(\frac{1}{1+u^2})^2du\\ \end{aligned}
Try
1x1+xdx(u=1x1+x,du=1x(1x)1+2x+x2dx=2(1+x)2dx)(xu+u=1x,x(u+1)=1u,x=1u1+u)=12u(1+x2)du=12u(1+(12u+u21+2u+u2)2)du=12u(2+2u21+2u+u2)2du=2u(1+u2)2(1+u)4du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(u=\frac{1-x}{1+x}, du=\frac{-1-x-(1-x)}{1+2x+x^2}dx=\frac{-2}{(1+x)^2}dx)\\ &( xu+u=1-x, x(u+1)=1-u, x=\frac{1-u}{1+u})\\ &=-\frac{1}{2}\int \sqrt{u} (1+x^2) du = -\frac{1}{2}\int \sqrt{u} (1+(\frac{1-2u+u^2}{1+2u+u^2})^2) du \\ &=-\frac{1}{2}\int \sqrt{u} (\frac{2+2u^2}{1+2u+u^2})^2 du \\ &=-2\int\sqrt{u}\frac{(1+u^2)^2}{(1+u)^4}du \end{aligned}
Solve
1x1+xdx=(1x)(1x)(1+x)(1x)dx=(1x)21x2dx=1x1x2dx=11x2dxx1x2dx(u=1x2,du=2xdx)=sin1x+121udu=sin1x+12u12du=sin1x+1x2+C \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx =\int \sqrt{\frac{(1-x)(1-x)}{(1+x)(1-x)}} dx\\ &=\int \sqrt{\frac{(1-x)^2}{1-x^2}} dx =\int \frac{1-x}{\sqrt{1-x^2}}dx\\ &=\int \frac{1}{\sqrt{1-x^2}}dx-\int \frac{x}{\sqrt{1-x^2}}dx\\ & (u=1-x^2, du=-2xdx)\\ &=\sin^{-1}x+\frac{1}{2}\int\frac{1}{\sqrt{u}}du=\sin^{-1}x+\frac{1}{2}\int u^{-\frac{1}{2}}du\\ &=\sin^{-1}x+\sqrt{1-x^2}+C \end{aligned}


77. xx/ln(x)dx\int x^{x/ln(x)}dx

Interesting…
xxln(x)dx((xln(x))=ln(x)1(ln(x))2)(y=xxln(x),ln(y)=xln(x)ln(x))(1yy=ln(x)1(ln(x))2ln(x)+xln(x)1x)(1yy=ln(x)1ln(x)+1ln(x)=1)y=y=xxln(x)+C \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx\\ &( (\frac{x}{ln(x)})'=\frac{ln(x)-1}{(ln(x))^2})\\ &(y=x^{\frac{x}{ln(x)}}, ln(y)=\frac{x}{ln(x)}ln(x))\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{(ln(x))^2}ln(x)+\frac{x}{ln(x)}\frac{1}{x})\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{ln(x)}+\frac{1}{ln(x)}=1)\\ &y'=y\\ &=x^{\frac{x}{ln(x)}}+C \end{aligned}
Alt.
xxln(x)dx=(elnx)xln(x)dx=exdx=ex+C(xxln(x)=ex) \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx = \int (e^{ln x})^{\frac{x}{ln(x)}}dx=\int e^x dx\\ &= e^x+C\\ &(x^{\frac{x}{ln(x)}}=e^x) \end{aligned}


78. arcsin(sqrt(x))dx\int arcsin(sqrt(x))dx

arcsin(x)dx( 루트부분을 치환. 부분적분)(u=x,u2=x,2udu=dx)=2usin1(u)du=(arcsin)=2(sin1u12u211u212u2du)=u2sin1uu21u2du=u2sin1u+1+1u21u2du=xsin1x11u2du+1u2du=xsin1xsin1x+1u2du \begin{aligned} &\int arcsin(\sqrt x) dx \\ &( \text{ 루트부분을 치환. 부분적분} )\\ &( u = \sqrt x, u^2=x, 2udu=dx)\\ &=2\int u sin^{-1}(u) du= (arcsin은 미분가능)\\ &=2( sin^{-1}u \frac{1}{2}u^2-\int \frac{1}{\sqrt{1-u^2}}\frac{1}{2}u^2 du )\\ &=u^2sin^{-1}u-\int \frac{u^2}{\sqrt{1-u^2}}du\\ &=u^2sin^{-1}u+\int \frac{-1+1-u^2}{\sqrt{1-u^2}}du\\ &=x\sin^{-1}\sqrt{x}-\int \frac{1}{\sqrt{1-u^2}}du+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ \end{aligned}

1u2du,(u=sinθ,du=cosθdθ)=cos2θdθ=121+cos2θdθ=12θ+12cos2θdθ=12θ+14sin2θ=12sin1u+12sinθcosθ=12sin1u+12u1u2 \int \sqrt{1-u^2}du, (u=sin\theta, du=cos\theta d\theta)\\ =\int cos^2\theta d\theta=\frac{1}{2}\int1+cos2\theta d\theta=\frac{1}{2}\theta+\frac{1}{2}\int cos 2\theta d\theta\\ =\frac{1}{2}\theta+\frac{1}{4} sin 2\theta =\frac{1}{2}sin^{-1}u+\frac{1}{2} sin \theta cos \theta\\ =\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}

arcsin(x)dx=xsin1xsin1x+1u2du=xsin1xsin1x+12sin1u+12u1u2=xsin1xsin1x+12sin1x+12x1x=(sin1x)(x12)+12x(1x)+C \begin{aligned} &\int arcsin(\sqrt x) dx \\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}\sqrt{x}+\frac{1}{2} \sqrt{x} \sqrt{1-x}\\ &=(\sin^{-1}x)(x-\frac{1}{2})+\frac{1}{2}\sqrt{x(1-x)}+C \end{aligned}


79. arctan(x)dx\int arctan(x) dx

arctan(x)dx(y=arctan(x),x=tan(y),dx=sec2ydy)=ysec2ydy()=ytan(y)tan(y)dy=xarctanx+lncosy+C=xarctanx+ln11+x2+C \begin{aligned} &\int arctan(x) dx \\ &(y=arctan(x), x=tan(y), dx=sec^2ydy)\\ &=\int y sec^2y dy (부분적분)\\ &=y \tan(y)-\int tan(y) dy=x\arctan{x}+ln|cos y|+C\\ &=x\arctan{x}+ln|\frac{1}{\sqrt{1+x^2}}|+C\\ \end{aligned}
Alt.
arctan(x)dx(we know11+x2dx=arctan(x))=arctan(x)xx1+x2dx(x2)=xarctanx12ln1+x2+C \begin{aligned} &\int arctan(x) dx \\ &(\text{we know} \int \frac{1}{1+x^2} dx=arctan(x))\\ &=arctan(x) x -\int \frac{x}{1+x^2} dx (x^2을 치환)\\ &=x \arctan{x}-\frac{1}{2}ln|1+x^2|+C \end{aligned}


80. 05f(x)dx\int_0^5 f(x) dx

if x<=2, f(x)=10
if x>=2, f(x)=3x223x^2-2
=02f(x)dx+25f(x)dx=0210dx+253x22dx=20+[x32x]25=20+(1154)=131 \begin{aligned} &=\int_0^2 f(x)dx+ \int_2^5 f(x) dx \\ &=\int_0^2 10 dx+ \int_2^5 3x^2-2 dx \\ &=20+\bigg[x^3-2x \bigg ]_2^5=20+(115-4)\\ &=131 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [61-70]  (0) 2019.10.23
Integral100 [51-60]  (1) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21
반응형
integral_br_61

61. sqrt(x2+4x)dx\int sqrt(x^2 + 4x)dx

x2+4xdx=x2+4x+44dx=(x+2)24dx(x+2=2secθ,dx=2secθtanθdθ)=(4sec2θ4)2secθtanθdθ=4secθtan2θdθ=4secθ(sec2θ1)dθ=4sec3θdθ4secθdθ \begin{aligned} &\int \sqrt{x^2 + 4x}dx = \int \sqrt{x^2 + 4x+4-4}dx \\ &=\int \sqrt{(x+2)^2-4}dx (x+2=2sec\theta, dx=2sec\theta tan \theta d\theta)\\ &=\int \sqrt{(4sec^2\theta-4) } 2sec\theta tan \theta d\theta\\ &=\int 4sec\theta tan^2\theta d\theta =4 \int sec \theta (sec^2\theta -1) d\theta \\ &=4\int sec^3 \theta d\theta -4\int sec\theta d\theta \end{aligned}

sec3xdx=secxsec2xdx=secxtanxsecxtan2xdx=secxtanxsecx(sec2x1)dx=secxtanxsec3xdx+secxdx2sec3xdx=secxtanx+lnsecx+tanxsec3xdx=12(secxtanx+lnsecx+tanx)+C \int sec^3 x dx = \int sec x sec^2x dx=secxtanx-\int sec x tan^2 x dx\\ =sec x tan x-\int sec x (sec^2x-1)dx\\ =sec x tan x-\int sec^3x dx +\int sec x dx\\ 2\int sec^3x dx = secx tanx+ln|sec x+tan x|\\ \int sec^3 x dx = \frac{1}{2}(sec x tan x + ln |sec x + tan x|)+C

=4sec3θdθ4secθdθ=2(secθtanθ+lnsecθ+tanθ)4lnsecθ+tanθ=2secθtanθ2lnsecθ+tanθ+C(secθ=x+22,R.T.angle=θ,a=2,h=x+2,o=x2+4x)=2x+22x2+422lnx+2+x2+42+C=(x+2)x2+422lnx+2+x2+42+C=(x+2)x2+422lnx+2+x2+4+C2 =4\int sec^3 \theta d\theta -4\int sec\theta d\theta\\ =2(sec \theta tan \theta + ln |sec \theta + tan \theta|)-4ln |sec \theta + tan \theta|\\ =2sec \theta tan \theta - 2ln|sec \theta + tan \theta|+C\\ (sec \theta = \frac{x+2}{2}, R.T. angle=\theta, a=2, h=x+2, o=\sqrt{x^2+4x})\\ =2 \frac{x+2}{2}\frac{\sqrt{x^2+4}}{2}-2ln|\frac{x+2+\sqrt{x^2+4}}{2}|+C\\ =\frac{(x+2)\sqrt{x^2+4}}{2}-2ln|\frac{x+2+\sqrt{x^2+4}}{2}|+C\\ =\frac{(x+2)\sqrt{x^2+4}}{2}-2ln|x+2+\sqrt{x^2+4}|+C_2\\


62. (x2)ex3dx\int (x^2)e^{x^3}dx

(x2)ex3dx(u=x3,du=3x2dx)=(x2)eu13x2du=eu=13ex3+C \begin{aligned} &\int (x^2)e^{x^3} dx \\ &(u=x^3, du=3x^2dx)\\ &=\int (x^2)e^{u} \frac{1}{3x^2} du=e^u\\ &=\frac{1}{3}e^{x^3}+C \end{aligned}


63. (x3)ex2dx\int (x^3)e^{x^2}dx

(x3)ex2dx(u=x2,du=2xdx)=12(x2)eudu=12ueudu=12(ueueu)=12(x21)ex2+C \begin{aligned} &\int (x^3)e^{x^2}dx (u=x^2, du=2xdx)\\ &=\frac{1}{2}\int (x^2)e^udu=\frac{1}{2}\int ue^udu\\ &=\frac{1}{2} ( ue^u-e^u ) \\ &= \frac{1}{2}(x^2-1 )e^{x^2}+C \end{aligned}


64. tan(x)ln(cos(x))dx\int tan(x)ln(cos(x))dx

tan(x)ln(cos(x))dx=sin(x)cos(x)ln(cos(x))dx(u=cos(x),du=sin(x)dx)=ln(u)1udu=(ln(u)ln(u)ln(u)udu)[2ln(u)udu=(ln(u))2]=12(ln(cosx))2+C \begin{aligned} &\int tan(x)ln(cos(x)) dx = \int \frac{sin(x)}{cos(x)}ln(cos(x)) dx \\ &(u=cos(x), du=-sin(x)dx)\\ &=-\int ln(u)\frac{1}{u} du = -(ln(u)ln(u)-\int \frac{ln(u)}{u} du)\\ &[ 2\int \frac{ln(u)}{u} du = (ln(u))^2 ]\\ &=-\frac{1}{2}(ln(\cos x))^2+C \end{aligned}\\
Alt.
(u=ln(cos(x),du=sinxcosxdx=tanxdx)tan(x)ln(cos(x))dx=udu=12(ln(cosx))2+C (u=ln(cos(x), du = -\frac{sin x}{cos x}dx=-tan x dx)\\ \int tan(x)ln(cos(x)) dx = -\int u du \\ =-\frac{1}{2}(ln(\cos x))^2+C


65. 1/(x34x2)dx\int 1/(x^3 - 4x^2)dx

1(x34x2)dx=1x2(x4)dx(ax+bx2+cx4=(c+a)x2+(b4a)x4bx2(x4))(b=14,a=b/4=116,c=a=116)=116x14x2dx+116x4dx=116(x+4x2dx1x4dx)=116(1xdx+4x2dxlnx4)=116(lnx4xlnx4)+C \begin{aligned} &\int \frac{1}{(x^3 - 4x^2)}dx \\ &=\int \frac{1}{x^2(x-4)}dx\\ &(\frac{ax+b}{x^2}+\frac{c}{x-4}=\frac{(c+a)x^2+(b-4a)x-4b}{x^2(x-4)})\\ &(b=-\frac{1}{4}, a=b/4=-\frac{1}{16}, c=-a=\frac{1}{16})\\ &=\int \frac{-\frac{1}{16}x-\frac{1}{4}}{x^2}dx+\int \frac{\frac{1}{16}}{x-4}dx\\ &=-\frac{1}{16} (\int \frac{x+4}{x^2}dx-\int \frac{1}{x-4}dx)\\ &=-\frac{1}{16} (\int \frac{1}{x}dx+4\int x^{-2}dx-ln|x-4|)\\ &=-\frac{1}{16} (ln|x|-\frac{4}{x}-ln|x-4|)+C \end{aligned}


66. sin(x)cos(2x)dx\int sin(x)cos(2x)dx

sin(x)cos(2x)dx=sin(x)(2cos2(x)1)dx=2sin(x)cos2(x)dxsin(x)dx(u=cos(x),du=sin(x)dx)=2u2du+cos(x)=23u3+cos(x)+C=23cos3(x)+cos(x)+C \begin{aligned} &\int sin(x)cos(2x)dx =\int sin(x) (2cos^2(x)-1)dx\\ &=2\int sin(x)cos^2(x)dx-\int sin(x) dx (u=cos(x), du=-sin(x)dx)\\ &=-2\int u^2 du+cos(x)=-\frac{2}{3}u^3+cos(x)+C\\ &=-\frac{2}{3}cos^3(x)+cos(x)+C \end{aligned}


67. 2ln(x)dx\int 2^{ln(x)} dx

2ln(x)dx(y=2ln(x),log2y=lnyln2=ln(x))(1yln2dy=1xdx,dydx=yln2x)=yxyln2dy=1ln2xdy=1ln2elog2ydy=1ln2ylog2edy=1ln2y1ln2dy(1ln2+1=1+ln2ln2)=1ln2ln2(1+ln2)y(1ln2+1)=1(1+ln2)yy1/ln2=1(1+ln2)2lnx2(lnx)(1/ln2)+C=1(1+ln2)2lnxx(ln2)(1/ln2)+C=x2lnx1+ln2+C \begin{aligned} &\int 2^{ln(x)} dx \\ &(y=2^{ln(x)}, log_2y=\frac{ln y}{ln 2}=ln(x))\\ &(\frac{1}{yln 2}dy=\frac{1}{x}dx, \frac{dy}{dx}=\frac{yln 2}{x})\\ &=\int y \frac{x}{yln 2}dy=\frac{1}{ln 2}\int x dy\\ &=\frac{1}{ln 2}\int e^{log_2y} dy\\ &=\frac{1}{ln 2}\int y^{log_2e} dy\\ &=\frac{1}{ln 2}\int y^{\frac{1}{ln 2}} dy\\ &(\frac{1}{ln 2}+1 =\frac{1+ln 2}{ln 2} )\\ &=\frac{1}{ln 2}\frac{ln2}{(1+ln 2)} y^{(\frac{1}{ln 2}+1)}\\ &=\frac{1}{(1+ln 2)} y y^{1/ln 2}\\ &=\frac{1}{(1+ln2)} 2^{ln x}2^{(ln x)(1/ln 2)}+C\\ &=\frac{1}{(1+ln2)} 2^{ln x}x^{(ln 2)(1/ln 2)}+C\\ &=\frac{x 2^{lnx}}{1+ln2}+C \end{aligned}
Alt.
2ln(x)dx=xln(2)dx=11+ln2x(1+ln2)+C=xxln21+ln2+C=x2lnx1+ln2+C \begin{aligned} &\int 2^{ln(x)} dx = \int x^{ln(2)} dx\\ &=\frac{1}{1+ln2}x^{(1+ln2)}+C\\ &=\frac{x x^{ln2}}{1+ln2}+C=\frac{x 2^{lnx}}{1+ln2}+C\\ \end{aligned}


68. sqrt(1+cos(2x))dx\int sqrt(1+cos(2x)) dx

1+cos(2x)dx=1+2cos2x1dx=2cosxdx=2sinx+C \begin{aligned} &\int \sqrt{1+cos(2x)}dx \\ &=\int \sqrt{1+2cos^2x-1}dx=\sqrt 2 \int cos x dx\\ &=\sqrt 2 \sin x +C \end{aligned}


69. 1/(1+tan(x))x\int 1/(1+tan(x)) x

11+tan(x)dx=1tan(x)1tan2(x)dx=1+2tan(x)3tan(x)1tan2(x)dx=tan(2x)dx+13tan(x)1tan2(x)dx=12lncos2x+cosx3sinxcosxcos2xsin2xcos2xdx=12lncos2x+cos2x3cosxsinxcos2xsin2xdx=cosxcosx+sinxdx(u=sinx,du=cosxdx)=11u2+udu=1+tan(x)1+tan2(x)+2tan(x)dx1+tan(x)dxtan(2x)=2tan(x)1tan2(x) \begin{aligned} &\int \frac{1}{1+tan(x)} dx \\ &=\int \frac{1-tan(x)}{1-tan^2(x)} dx=\int \frac{1+2tan(x)-3tan(x)}{1-tan^2(x)} dx\\ &=\int tan(2x) dx + \int \frac{1-3tan(x)}{1-tan^2(x)}dx\\ &=-\frac{1}{2}ln|cos 2x|+ \int \frac{\frac{cosx-3sinx}{cosx}}{\frac{cos^2x-sin^2x}{cos^2x}}dx \\ &=-\frac{1}{2}ln|cos 2x|+ \int \frac{cos^2x-3cos x sinx}{cos^2x-sin^2x}dx \\ &=\int \frac{cos x}{cos x+sin x} dx (u=sinx, du=cosxdx)\\ &=\int \frac{1}{\sqrt{1-u^2} + u} du\\ &=\int \frac{1+tan(x)}{1+tan^2(x)+2tan(x)} dx\\ &\int \frac{}{1+tan(x)} dx \\ &tan(2x)=\frac{2tan(x)}{1-tan^2(x)} \end{aligned}
first!..
1tan(x)1+tan(x)dx=cossincos+sindx(u=cos+sin,du=sin+cosdx)=1udu=lnu=lncos(x)+sin(x)+C \int \frac{1-tan(x)}{1+tan(x)} dx =\int \frac{cos-sin}{cos+sin} dx (u=cos+sin, du=-sin+cos dx)\\ =\int \frac{1}{u} du = ln|u|=ln|cos(x)+sin(x)|+C
11+tan(x)dx=121tan(x)+1+tan(x)1+tan(x)dx=121tan(x)1+tan(x)dx+12x=12lncos(x)+sin(x)+12x+C \int \frac{1}{1+tan(x)} dx =\frac{1}{2}\int \frac{1-tan(x)+1+tan(x)}{1+tan(x)} dx\\ =\frac{1}{2} \int \frac{1-tan(x)}{1+tan(x)} dx +\frac{1}{2}x\\ =\frac{1}{2}ln|cos(x)+sin(x)|+\frac{1}{2}x+C


70. 1/eesqrt(1ln(x)2)/xdx\int_{1/e}^e sqrt(1- ln(x)^2)/x dx

1/ee1ln(x)2xdx(u=ln(x),du=1xdx)=111u2du=2011u2du=area half circle, radius 1=π2(u=sinθ,du=cosθdθ)=20π/2cos2θdθ=0π/21+cos2θdθ=[θ+12sin2θ]0π/2=π2 \begin{aligned} &\int_{1/e}^e \frac{\sqrt{1- ln(x)^2}}{x} dx (u=ln(x), du=\frac{1}{x} dx)\\ &=\int_{-1}^{1} \sqrt{1-u^2} du =2\int_{0}^{1} \sqrt{1-u^2} du \\ &= \text{area half circle, radius 1} \\ &=\frac{\pi}{2}\\ & (u=sin \theta, du=cos\theta d\theta)\\ &=2\int_0^{\pi/2} cos^2\theta d\theta=\int_0^{\pi/2} 1+cos2\theta d\theta\\ &=\bigg[ \theta +\frac{1}{2}sin 2\theta \bigg]_0^{\pi/2}\\ &=\frac{\pi}{2} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [81-89]  (1) 2019.10.26
Integral100 [71-80]  (1) 2019.10.24
Integral100 [51-60]  (1) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21
Integral100 [31-40]  (0) 2019.10.16
반응형

 

cmd(콘솔)창 관리자권한으로 실행하기

cmd 창을 자주 사용하는데, 가끔 관리자 권한이 필요해서 다시 창을 띄우는데 띄우기가 번거롭다.
윈도우 기본 기능으로 빨리 cmd창을 관리자 권한으로 실행할 수 없을까?

  1. Ctrl+Shift+ESC 키를 누른다. (작업관리자 실행됨)
  2. Alt를 계속 누른 상태로 F, N을 차례로 누른다.
    image
  3. cmd를 입력 후, 키, 스페이스키, 엔터 순서로 입력한다. (관리자 권한을 체크하여 실행)

Author: crazyj7@gmail.com

추가로... 더 간단한 방법이 있다...

윈도우키+X 후에 A를 누른다.

 

 

'Develop > Windows' 카테고리의 다른 글

자모병합 / 한타영타 변환기  (2) 2020.11.10
크롬 한글 버그 수정  (1) 2019.10.28
Windows10 IP Change command line  (0) 2019.10.23
DOS Batch Script  (0) 2019.10.06
curl 사용법/HTTP 테스트  (0) 2019.10.01
반응형
windows_ipchange

Windows10 IP Change Command line

윈도우10에서 PC나 노트북 이동시 자주 사용하는 곳을 왔다갔다할 경우 자주 IP 변경해야 할 경우, 그 때마다 네트웍 설정을 해 주기가 너무 번거롭다.
이것을 커맨드 라인으로 자동화 할 수 있으면 편리하다.
이런 사용자들을 위한 팁.
윈도우 10 IP 변경 커맨드 라인

장소1

현재 네트웍 정보를 확인하고 화면캡쳐를 해둘것을 권장한다. 나중에 찾아볼때 편하다. 네트웍디바이스(NIC)명을 확인하고 ip address, network, gateway, dns 설정 등이다.

ip1
위에서 “이더넷 어댑터” 뒤에 나온 스트링을 잘 기억해야 한다. 보통은 “로컬 영역 연결” 이라고 나오는 것이 일반적이다. PC마다 다를 수 있어서 확인해 주어야 한다. 여기서는 “알수없음” 이라고 나와있어서 그렇게 작성하였다.

아래와 같이 배치 파일(network_pub.bat)을 만들어 준다. 이것은 장소1에서 현재의 네트웍 상태로 만들어주는 스크립트이다. 위에서 나오는 필드들을 잘 확인하여 자신에 맞는 형태로 바꾸어 주면 된다. (인터페이스명과 IP들만 바꿔준다.)

ip2

netsh int ip set address "알수없음" static 172.16.10.11 255.255.0.0 172.16.10.254 1
netsh int ip set dns "알수없음" static 172.16.10.1 primary  validate=no
netsh int ip add dns "알수없음" 168.126.63.1 index=2 validate=no

장소2

장소2에서도 마찬가지로 부여받은 고정IP로 네트웍을 설정한 후, 현재 상태를 확인한다. (이것도 별도로 화면캡쳐 해 두는 것이 좋다.)
이더넷 어탭터(NIC 인터페이스) 이름은 장소1에서 사용한 이름과 동일할 것이다. IP address, NetMask, Gateway, DNS IP를 확인한다.
ip3

이제 장소2의 네트웍 변경 커맨드를 아래와 같이 작성한다. (인터페이스명과 IP들만 바꿔준다.)
image

netsh int ip set address "알수없음" static 192.168.10.11 255.255.255.0 192.168.10.254 1
netsh int ip set dns "알수없음" static 8.8.8.8 primary validate=no

완료

주의!!! 위 배치 파일을 실행하기 위해서는!!!
cmd.exe 창을 열 때 반드시 관리자 권한으로 실행해야 한다.
(cmd 명령프로프트 아이콘에서 마우스 우클릭하여 관리자권한으로 실행)

이제 장소 1에서는 network_pub.bat를 실행하고, 장소2에서는 network_pri.bat를 실행하기만 하면 고정IP가 설정대로 변경될 것이다.
이제 더 이상 장소 이동시 귀찮은 네트웍 설정 변경 작업을 하지 않아도 된다!!!

Author: crazyj7@gmail.com

'Develop > Windows' 카테고리의 다른 글

크롬 한글 버그 수정  (1) 2019.10.28
커맨드(cmd)창 관리자권한 실행  (1) 2019.10.23
DOS Batch Script  (0) 2019.10.06
curl 사용법/HTTP 테스트  (0) 2019.10.01
화면/윈도우 동영상 녹화 (mp4, gif)  (0) 2019.09.23
반응형
integral_br_51

51. sec6xdx\int \sec^6x dx

sec6xdx=sec2xsec4xdx(D(tanx)sec2x)=sec4xtanx4sec3xsecxtanxtanxdx=sec4xtanx4sec4xtan2xdx=sec4xtanx4sec4xsec2xsec4xdx=sec4xtanx4sec6xdx+4sec4xdx5sec6xdx=sec4xtanx+4sec4dxsec4dx=sec2x(1+tan2x)dx=sec2xdx+sec2xtan2xdx=tanx+sec2xtan2xdxsec2xtan2xdx(u=tanx,du=sec2xdx)=u2du=13u3=13tan3x5sec6xdx=sec4xtanx+4sec4dx=sec4xtanx+4(tanx+13tan3x)sec6xdx=15sec4xtanx+45tanx+415tan3x+C=15(1+2tan2x+tan4x)tanx+45tanx+415tan3x+C=15tan5x+55tanx+1015tan3x+C=15tan5x+23tan3x+tanx+C \begin{aligned} &\int \sec^6x dx =\int \sec^2x sec^4 x dx\\ &(D( tanx ) \rightarrow sec^2x) \\ &=sec^4x tanx-\int 4sec^3xsecxtanxtanxdx\\ &=sec^4xtanx-4\int sec^4xtan^2x dx\\ &=sec^4xtanx-4\int sec^4xsec^2x-sec^4x dx\\ &=sec^4xtanx-4\int sec^6x dx+4\int sec^4x dx\\ &5\int sec^6x dx = sec^4xtanx+4\int sec^4 dx\\ &\int sec^4 dx=\int \sec^2x (1+\tan^2x) dx=\int sec^2x dx+\int sec^2xtan^2xdx\\ &=\tan{x}+\int sec^2xtan^2x dx\\ &\int sec^2xtan^2x dx (u=tan x, du= sec^2x dx)\\ &=\int u^2 du = \frac{1}{3}u^3=\frac{1}{3}\tan^3{x}\\ &5\int sec^6x dx = sec^4xtanx+4\int sec^4 dx\\ &=sec^4xtanx+4(tan x+\frac{1}{3}\tan^3{x})\\ &\therefore \int sec^6x dx=\frac{1}{5}sec^4xtanx +\frac{4}{5}tanx+\frac{4}{15}tan^3x +C\\ &=\frac{1}{5}(1+2tan^2x+tan^4x)tanx +\frac{4}{5}tanx+\frac{4}{15}tan^3x +C\\ &=\frac{1}{5}tan^5x+\frac{5}{5}tanx+\frac{10}{15}tan^3x +C\\ &=\frac{1}{5}tan^5x+\frac{2}{3}tan^3x+tan {x} +C\\ \end{aligned}
Alternative

sec6xdx=(sec2x)2sec2xdx=(1+tan2x)2sec2xdx(u=tanx,du=sec2xdx)=(1+u2)2du=u4+2u2+1du=15u5+23u3+u=15tan5x+23tan3x+tanx+C \begin{aligned} &\int \sec^6x dx =\int (\sec^2x)^2 sec^2 x dx=\int (1+\tan^2x)^2 sec^2 x dx\\ &(u=tanx, du=sec^2x dx)\\ &=\int (1+u^2)^2 du = \int u^4+2u^2+1du=\frac{1}{5}u^5+\frac{2}{3}u^3+u\\ &=\frac{1}{5}tan^5x+\frac{2}{3}tan^3x+tan {x} +C\\ \end{aligned}


52. 1/(5x2)4dx\int 1/(5x - 2)^4 dx

1(5x2)4dx(u=5x2,du=5dx)=15u4du=115u3=115(5x2)3+C \begin{aligned} &\int \frac{1}{(5x - 2)^4}dx (u=5x-2, du=5dx)\\ &=\frac{1}{5}\int u^{-4}du=-\frac{1}{15}u^{-3}=-\frac{1}{15}(5x-2)^{-3}+C \end{aligned}


53. ln(1+x2)dx\int ln (1+x^2) dx

ln(1+x2)dx=1ln(1+x2)dx=(ln1+x2)(x)2x21+x2dx=xln1+x22x2+111+x2dx=xln1+x22111+x2dx=xln1+x22x+211+x2dx=xln1+x22x+2arctanx+C \begin{aligned} &\int ln (1+x^2)dx =\int 1*ln (1+x^2)dx \\ &=(ln|1+x^2|)(x)-\int \frac{2x^2}{1+x^2} dx\\ &=xln|1+x^2|-2\int \frac{x^2+1-1}{1+x^2} dx\\ &=xln|1+x^2|-2\int 1-\frac{1}{1+x^2} dx\\ &=xln|1+x^2|-2x+2\int\frac{1}{1+x^2} dx\\ &=xln|1+x^2|-2x+2 \arctan{x}+C\\ \end{aligned}


54. 1x4+xdx\int \frac{1}{x^4+x} dx

1x4+xdx=1x(x3+1)dx=1x(x+1)(x2x+1)dx=1x+13x+1+23x+13x2x+1dx=lnx13lnx+123x12(x12)2+34dx=lnx13lnx+113lnx2x+1+C=13lnx313lnx+113lnx2x+1+C=13lnx31(x+1)1(x2x+1)+C=13lnx3x3+1+C=13lnx3+1x3+C=13ln1+x3+C \begin{aligned} &\int \frac{1}{x^4+x} dx =\int \frac{1}{x(x^3+1)}dx \\ &=\int \frac{1}{x(x+1)(x^2-x+1)}dx \\ &=\int \frac{1}{x}+\frac{-\frac{1}{3}}{x+1}+\frac{-\frac{2}{3}x+\frac{1}{3}}{x^2-x+1}dx \\ &=ln|x|-\frac{1}{3}ln|x+1|-\frac{2}{3} \int \frac{x-\frac{1}{2}}{(x-\frac{1}{2})^2+\frac{3}{4}}dx\\ &=ln|x|-\frac{1}{3}ln|x+1|-\frac{1}{3} ln |x^2-x+1|+C\\ &=\frac{1}{3}ln|x^3|-\frac{1}{3}ln|x+1|-\frac{1}{3} ln |x^2-x+1|+C\\ &=\frac{1}{3}ln|x^3\frac{1}{(x+1)}\frac{1}{(x^2-x+1)}+C\\ &=\frac{1}{3}ln|\frac{x^3}{x^3+1}|+C=-\frac{1}{3}ln|\frac{x^3+1}{x^3}|+C\\ &=-\frac{1}{3}ln|1+x^{-3}|+C \end{aligned}
Alternative (미분형태가 나오도록… 차수를 1차이나게…)
1x4+xdx=1x4(1+x3)dx=x41+x3dx(u=1+x3,du=3x4dx)=131udx=13lnu=13ln1+x3+C \begin{aligned} &\int \frac{1}{x^4+x} dx =\int \frac{1}{x^4(1+x^{-3})}dx \\ &=\int \frac{x^{-4}}{1+x^{-3}}dx (u=1+x^{-3}, du=-3x^{-4}dx)\\ &=-\frac{1}{3}\int \frac{1}{u}dx=-\frac{1}{3}ln|u|=-\frac{1}{3}ln|1+x^{-3}|+C \end{aligned}


55. 1tanx1+tanxdx\int \frac{1-tan x }{1+tan x} dx

1tanx1+tanxdx=cosxsinxcosx+sinxdx=cos2xsin2x(cosx+sinx)2dxAlt.=lncosx+sinx+C=cos(2x)1+sin(2x)dx(u=1+sin(2x),du=2cos(2x)dx)=121udu=12ln1+sin(2x)+C \begin{aligned} &\int \frac{1-tan x }{1+tan x} dx \\ &=\int \frac{cos x-sin x }{cos x+sin x} dx =\int \frac{cos^2 x-sin^2 x }{(cos x+sin x)^2} dx \\ Alt. &= ln|cosx+sinx|+C\\ &=\int \frac{cos (2x) }{1+sin(2x)} dx (u=1+sin(2x), du = 2cos(2x)dx)\\ &=\frac{1}{2}\int \frac{1}{u}du\\ &=\frac{1}{2}ln|1+sin(2x)|+C \end{aligned}

12ln1+sin(2x)=ln1+2sinxcosx=lncos2x+sin2x+2sinxcosx=lncosx+sinx \frac{1}{2}ln|1+sin(2x)|=ln|\sqrt{1+2sinxcosx}|\\ =ln|\sqrt{cos^2x+sin^2x+2sinxcosx}|\\ =ln|cos x + sin x|


56. xsec(x)tan(x)dx\int x·sec(x)·tan(x) dx

xsecxtanxdxdx(Dsecsecxtanx)=xsecxsecxdx=xsecxlnsecx+tanx+C \begin{aligned} &\int x \sec{x} \tan{x} dx dx (D sec \rightarrow sec x tan x) \\ &=x sec x - \int sec x dx\\ &=x sec x - ln|sec x+tan x | + C\\ \end{aligned}
Check…
D(xsecxlnsecx+tanx)=secx+x(secxtanx)secxtanx+sec2xsecx+tanx=secx+xsecxtanxsecx=xsecxtanx D(x \sec x - ln|\sec x+\tan x | ) \\ = \sec x+x(\sec x \tan x)-\frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x } \\ = \sec x + x \sec x \tan x - \sec x = x \sec x \tan x


57. arcsec(x)dx\int arcsec(x) dx

arcsec(x)dx(y=arcsec(x),x=sec(y),dx=sec(y)tan(y)dy)=ysec(y)tan(y)dy=ysec(y)sec(y)dy=ysec(y)lnsec(y)+tan(y)(R.Tangle=y,a=1,h=x,o=sqrt(x21))=xarcsec(x)lnx+tan(arcsec(x))+C=xarcsec(x)lnx+x21+C \begin{aligned} &\int arcsec(x) dx \\ &( y=arcsec(x), x=sec(y), dx=sec(y)tan(y)dy )\\ &=\int y sec(y) tan (y) dy = y sec(y) - \int sec(y) dy \\ &=y sec(y) - ln | sec(y)+tan(y) | \\ &(R.T angle=y, a=1, h=x, o=sqrt(x^2-1) )\\ &=x arcsec(x)-ln |x+tan(arcsec(x)) |+C \\ &=x arcsec(x)-ln |x+\sqrt{x^2-1} |+C \\ \end{aligned}
Alt.

D(arcsinx)(y=arcsec(x),x=sec(y),dx=sec(y)tan(y)dy)=dydx=1sec(y)tan(y)=cos2ycscy=(1x)2xx21=1xx21 D(\arcsin{x}) \\ ( y=arcsec(x), x=sec(y), dx=sec(y)tan(y)dy )\\ =\frac{dy}{dx} = \frac{1}{sec(y)tan(y)}=cos^2y \csc y\\ =(\frac{1}{x})^2 \frac{x}{\sqrt{x^2-1}}=\frac{1}{x\sqrt{x^2-1}}

arcsec(x)dx=arcsec(x)(x)1xx21xdx=xarcsec(x)1x21dx \int arcsec(x) dx = arcsec(x)(x)-\int \frac{1}{x \sqrt{x^2-1}} x dx \\ =x arcsec(x)-\int \frac{1}{\sqrt{x^2-1}}dx

1x21dx(x=secθ,dx=secθtanθdθ)=1tanθsecθtanθdθ=secθdθ=lnsecθ+tanθ \int \frac{1}{\sqrt{x^2-1}}dx (x=sec\theta, dx=sec\theta tan\theta d \theta)\\ =\int \frac{1}{tan \theta} sec\theta tan\theta d \theta\\ =\int sec \theta d \theta =ln|sec \theta+tan \theta|

arcsec(x)dx=xarcsec(x)lnsecθ+tanθ(R.Tangle=θ,a=1,h=x,o=sqrt(x21))arcsec(x)dx=xarcsec(x)lnx+x21+C \int arcsec(x) dx =x arcsec(x)-ln | sec \theta+tan\theta| \\ (R.T angle=\theta, a=1, h=x, o=sqrt(x^2-1))\\ \int arcsec(x) dx =x arcsec(x)-ln | x+\sqrt{x^2-1}| +C


58. (1cos(x))/(1+cos(x))dx\int (1 - cos(x))/(1 + cos(x)) dx

1cos(x)1+cos(x)dx=12cos(x)+cos2x1cos2xdx=12cos(x)+cos2xsin2xdx=1sin2xdx2cosxsin2xdx+cos2xsin2xdx \begin{aligned} &\int \frac{1 - cos(x)}{1 + cos(x)}dx \\ &=\int \frac{1-2cos(x)+cos^2x}{1-cos^2x} dx =\int \frac{1-2cos(x)+cos^2x}{sin^2x} dx \\ &=\int \frac{1}{sin^2x}dx-2\int \frac{cos x}{sin^2 x}dx+\int \frac{cos^2x}{sin^2x} dx \end{aligned}

1sin2xdx=cos2x+sin2xsin2x=cos2xsin2xdx+x=cot2xdx+x=csc2x1dx+x=csc2xdx=cotxcosxsin2xdx(u=sinx,du=cosxdx)=duu2=1u=cscxcos2xsin2xdx=cot2xdx=csc2x1dx=cotxx \int \frac{1}{sin^2x} dx=\int \frac{cos^2x + sin^2x}{sin^2x}\\ =\int \frac{cos^2x}{sin^2x} dx +x = \int cot^2x dx +x\\ =\int csc^2x-1 dx+x =\int csc^2x dx = -cot x \\ \int \frac{cos x}{sin^2x} dx (u=sin x, du=cos x dx)\\ =\int \frac{du}{u^2} = -\frac{1}{u}=-csc x\\ \int \frac{cos^2x}{sin^2x} dx =\int cot^2x dx =\int csc^2x-1dx\\ =-cot x - x

=1sin2xdx2cosxsin2xdx+cos2xsin2xdx=cotx+2cscxcotxx=2cscx2cotxx+C=2(cscxcotx)x+C=2(1cosxsinx)x+C =\int \frac{1}{sin^2x}dx-2\int \frac{cos x}{sin^2 x}dx+\int \frac{cos^2x}{sin^2x} dx \\ = -cot x +2 csc x -cot x - x\\ =2 csc x -2cot x -x +C =2 (csc x -cot x) -x +C\\ =2(\frac{1-cos x}{sin x})-x+C\\

=2(1cosx2sinx2)x+C=2(sin2x22sinx2cosx2/2)x+C=2tan(x2)x+C =2(\frac{\frac{1-cosx}{2}}{\frac{sinx}{2}})-x+C\\ =2(\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}/2} )-x+C\\ =2tan(\frac{x}{2})-x+C

Alt.
1cos(x)1+cos(x)dx(sin2(x2)=1cosx2,cos2(x2)=1+cosx2)=sin2(x2)cos2(x2)dx=1cos2(x2)cos2(x2)dx=sec2x2dxx=2tan(x2)x+C \begin{aligned} &\int \frac{1 - cos(x)}{1 + cos(x)}dx \\ &( sin^2(\frac{x}{2})=\frac{1-cosx}{2} , cos^2(\frac{x}{2})=\frac{1+cosx}{2} )\\ &=\int \frac{sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})} dx =\int \frac{1-cos^2(\frac{x}{2})}{cos^2(\frac{x}{2})} dx \\ &=\int sec^2{\frac{x}{2}} dx-x \\ &=2tan(\frac{x}{2})-x+C \end{aligned}


59. (x2)sqrt(x+4)dx\int (x^2)sqrt(x + 4)dx

x2x+4dx(u=x+4,du=12x+4dx)=(u24)2u2udu=2u2(u48u2+16)du=2u616u4+32u2du=27u7165u5+323u3+C=27(x+4)72165(x+4)52+323(x+4)32+C \begin{aligned} &\int x^2\sqrt{x+4}dx \\ &(u=\sqrt{x+4}, du=\frac{1}{2\sqrt{x+4}}dx)\\ &=\int(u^2-4)^2u 2u du=\int 2u^2(u^4-8u^2+16)du\\ &=\int 2u^6-16u^4+32u^2 du\\ &=\frac{2}{7}u^7-\frac{16}{5}u^5+\frac{32}{3}u^3+C\\ &=\frac{2}{7}(x+4)^\frac{7}{2}-\frac{16}{5}(x+4)^\frac{5}{2}+\frac{32}{3}(x+4)^\frac{3}{2}+C\\ \end{aligned}


60. 11sqrt(4x2)dx\int_{-1}^1 sqrt(4 - x^2) dx

114x2dx=2014x2dx(x=2sinθ,dx=2cosθdθ)=20π/62cosθ2cosθdθ=8cos2θdθ=41+cos2θdθ=4θ+2sin2θ=4(π/6)+2(3/2)=2π3+3 \begin{aligned} &\int_{-1}^1 \sqrt{4 - x^2} dx = 2\int_0^1 \sqrt{4 - x^2} dx \\ &( x=2sin\theta, dx=2cos\theta d\theta)\\ &=2\int_0^{\pi/6} 2cos \theta2cos\theta d\theta = 8\int cos^2 \theta d\theta\\ &=4\int 1+cos2\theta d\theta = 4\theta+2sin2\theta \\ &=4(\pi/6)+2(\sqrt{3}/2)\\ &=\frac{2\pi}{3}+\sqrt{3} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [71-80]  (1) 2019.10.24
Integral100 [61-70]  (0) 2019.10.23
Integral100 [41-50]  (0) 2019.10.21
Integral100 [31-40]  (0) 2019.10.16
Integral100 [21-30]  (1) 2019.10.15
반응형
integral_br_41

41. sinhxdx\int \sinh{x}dx

sinhxdx=exex2dx=12(exdxexdx)=ex+ex2=coshx+C \begin{aligned} &\int \sinh {x} dx \\ &=\int \frac {e^x-e^{-x}}{2} dx =\frac{1}{2}(\int e^xdx-\int e^{-x}dx)\\ &=\frac{e^x+e^{-x}}{2}=\cosh {x}+C \end{aligned}


42. sinh2xdx\int \sinh^2{x}dx

sinh2xdx=(exex2)2dx=14(e2xdx+e2xdx2dx)=e2xe2x812x=14sinh2x12x+C \begin{aligned} &\int \sinh^2 {x} dx \\ &=\int (\frac {e^x-e^{-x}}{2})^2 dx =\frac{1}{4}(\int e^{2x}dx+\int e^{-2x}dx-\int 2 dx)\\ &=\frac{e^{2x}-e^{-2x}}{8}-\frac{1}{2}x=\frac{1}{4}\sinh {2x}-\frac{1}{2}x+C \end{aligned}


43. sinh3xdx\int \sinh^3{x}dx

sinh3xdx=sinhxsinh2xdx=sinhx(cosh2x1)dx=sinhxcosh2xdxsinhxdx(u=coshx,du=sinhxdx)=u2ducoshx=13cosh3xcoshx+C \begin{aligned} &\int \sinh^3{x} dx \\ &=\int \sinh{x}\sinh^2{x} dx =\int \sinh{x}(\cosh^2{x}-1) dx\\ &=\int sinhx cosh^2x dx -\int sinh x dx (u=cosh x, du = sinh x dx)\\ &=\int u^2 du-cosh x=\frac{1}{3}cosh^3x-coshx+C \end{aligned}


44. 11+x2dx\int \frac{1}{\sqrt{1+x^2}}dx

11+x2dx(x=tan(y),dx=sec2ydy)=1secysec2ydy=secydy=lnsecy+tany+C(R.T.x=tany,a=1,o=x,h=1+x2)=ln1+x2+x+C \begin{aligned} &\int \frac{1}{\sqrt{1+x^2}}dx (x=tan(y), dx=sec^2y dy)\\ &=\int \frac{1}{sec{y}} sec^2ydy=\int \sec{y} dy\\ &=ln|\sec{y}+\tan{y}|+C\\ &(R.T. x=tan y, a=1, o=x, h=\sqrt{1+x^2})\\ &=ln|\sqrt{1+x^2}+x|+C\\ \end{aligned}
Alternative

let sinh1x=y\sinh^{-1}{x}=y, sinhy=xsinh{y}=x
=ln1+sinh2y+sinhy=ln1+(eyey2)2+eyey2=lne2y+e2y2+44+eyey2=lney+ey2+eyey2=lney=y=sinh1x =ln|\sqrt{1+sinh^2y}+sinh{y}|\\ =ln|\sqrt{1+(\frac{e^y-e^{-y}}{2})^2}+\frac{e^y-e^{-y}}{2}|\\ =ln|\sqrt{\frac{e^{2y}+e^{-2y}-2+4}{4}}+\frac{e^y-e^{-y}}{2}|\\ =\ln| \frac{e^y+e^{-y}}{2} +\frac{e^y-e^{-y}}{2}| = \ln |e^y|=y\\ =\sinh^{-1}{x}


45. ln(x+sqrt(x2+1))dx\int ln(x + sqrt(x^2 + 1) ) dx

ln(x+x2+1)dx=sinh1xdx(x=sinhθ,dx=coshθdθ)=ln(sinhθ+sinh2θ+1)coshθdθ=ln(sinhθ+coshθ)coshθdθ=θcoshθdθ=θsinhθcoshθ+C=xsinh1xsinh2θ+1+C=xsinh1xx2+1+C \begin{aligned} &\int ln(x + \sqrt{x^2 + 1} )dx = \int sinh^{-1}x dx\\ &(x=sinh \theta, dx=cosh\theta d\theta) \\ &=\int ln (sinh \theta +\sqrt{sinh^2 \theta+1})cosh \theta d \theta\\ &=\int ln (sinh \theta + cosh \theta)cosh\theta d \theta \\ &=\int \theta cosh \theta d \theta \\ &=\theta sinh \theta - cosh\theta+C\\ &=x \sinh^{-1}{x}-\sqrt{sinh^2\theta+1}+C\\ &=x \sinh^{-1}{x}-\sqrt{x^2+1}+C \end{aligned}


46. tanhxdx\int \tanh{x} dx

tanhxdx=sinhxcoshxdx,(u=coshx,du=sinhxdx)=duu=lnu+C=lncoshx+C \begin{aligned} &\int \tanh{x} dx \\ &=\int \frac{sinh x}{cosh x} dx, (u=cosh x, du = sinh x dx )\\ &=\int \frac{du}{u} = ln |u| +C=ln|cosh x|+C \end{aligned}


47. sechxdx\int sech{x} dx

(sech{x})’ = -sech(x)tanh(x)
sechxdx=1coshxdx=coshxcosh2xdx=coshxsinh2x+1dx(u=sinhx,du=coshxdx)=11+u2du=arctanu=tan1(sinh1x)+C \begin{aligned} &\int sech{x} dx = \int \frac{1}{cosh{x}} dx = \int \frac{cosh{x}}{cosh^2{x}} dx \\ &=\int \frac{coshx}{sinh^2x+1}dx (u=sinhx, du=coshxdx)\\ &=\int \frac{1}{1+u^2} du\\ &=\arctan {u} = \tan^{-1}({\sinh^{-1}x})+C \end{aligned}


48. tanh1xdx\int \tanh^{-1}{x} dx

(y=tanh^-1 x, x=tanh y, dx=sech^2 y dy)
(tanh x)’ = sech^2(x)
tanh1xdx=ysech2ydy=ytanh(y)tanh(y)dy=ytanh(y)lncosh(y)=xtanh1xlncosh(tanh1x)+C \begin{aligned} &\int \tanh^{-1}{x} dx \\ &=\int y sech^2y dy = y tanh(y)-\int tanh(y) dy\\ &=y tanh(y)-ln|cosh(y)|\\ &=xtanh^{-1}x-ln|cosh(tanh^{-1}x)|+C \\ \end{aligned}

y=tanh1xcosh(tanh1x)=cosh(y)...?? y=tanh^{-1}x \\ cosh(tanh^{-1}x) =cosh (y)\\ ... ??

tanh1xdx(tanh1xD11x2)=(tanh1x)(x)11x2xdx=xtanh1xx1x2dx(u=1x2,du=2xdx)=xtanh1x+121udu=xtanh1x+12ln1x2+C \begin{aligned} &\int \tanh^{-1}{x} dx \\ &(tanh^{-1}x \rightarrow D \rightarrow \frac{1}{1-x^2})\\ &=(\tanh^{-1}{x}) (x) - \int \frac{1}{1-x^2}xdx\\ &=x \tanh^{-1}{x} - \int \frac{x}{1-x^2}dx (u=1-x^2, du=-2xdx)\\ &=x \tanh^{-1}{x} +\frac{1}{2} \int \frac{1}{u} du\\ &=x \tanh^{-1}{x} +\frac{1}{2}ln|1-x^2|+C \end{aligned}


49. tanhxdx\int \sqrt{\tanh{x}} dx

tanhxdx=sinhxcoshxdx(u=coshx,du=sinhx2coshxdx)=sinhxu2coshxsinhxdu=21sinhxdu=21cosh2x1du=21(u41)1/4du \begin{aligned} &\int \sqrt{\tanh{x}} dx \\ &=\int \sqrt{\frac{sinh x}{cosh x}} dx\\ &(u=\sqrt{coshx}, du =\frac{sinhx}{2\sqrt{cosh x}}dx )\\ &=\int \frac{\sqrt{sinh x}}{u}\frac{2\sqrt{coshx}}{sinhx}du\\ &=2\int \frac{1}{\sqrt{sinhx}}du=2\int \frac{1}{\sqrt{ \sqrt{cosh^2x-1}}}du\\ &=2\int \frac{1}{(u^4-1)^{1/4}}du \end{aligned}


tanhxdx=sinhxcoshxdx(u=coshx,du=sinhxdx)=sinhxu1sinhxdu=1usinhxdu=1uu21du=1(u4u2)1/4du \begin{aligned} &\int \sqrt{\tanh{x}} dx \\ &=\int \sqrt{\frac{sinh x}{cosh x}} dx\\ &(u=coshx, du =sinhx dx )\\ &=\int \frac{\sqrt{sinh x}}{\sqrt{u}}\frac{1}{sinhx}du\\ &=\int \frac{1}{\sqrt{u}\sqrt{sinhx}}du=\int \frac{1}{\sqrt{u\sqrt{u^2-1} }}du\\ &=\int\frac{1}{(u^4-u^2)^{1/4}}du \end{aligned}


tanhxdx(u=tanh(x),u2=tanhx,x=arctanh(u2))(dx=11u42udu)=u11u42udu=2u21u4du=2u2(1u2)(1+u2)du=2121u2+121+u2du=11u211+u2du=arctanh(u)arctan(u)=arctanh(tanh(x))arctan(tanh(x))+C \begin{aligned} &\int \sqrt{\tanh{x}} dx \\ &(u=\sqrt{tanh(x)}, u^2=tanhx, x=arctanh(u^2) )\\ &(dx=\frac{1}{1-u^4}2udu)\\ &=\int u \frac{1}{1-u^4}2udu \\ &=2\int \frac{u^2}{1-u^4}du = 2\int \frac{u^2}{(1-u^2)(1+u^2)}du\\ &=2\int \frac{\frac{1}{2}}{1-u^2}+\frac{-\frac{1}{2}}{1+u^2} du\\ &=\int \frac{1}{1-u^2}-\frac{1}{1+u^2} du\\ &=arctanh(u)-arctan(u)\\ &=arctanh(\sqrt{tanh(x)})-arctan(\sqrt{tanh(x)})+C\\ \end{aligned}


50. 05[x]dx\int_0^5 [x] dx

05[x]dxx=[0,1)y=0,x=[1,2)y=1,x=[2,3)y=2...Area=0+1+2+3+4=10 \begin{aligned} &\int_0^5 [x] dx \\ &x=[0,1) y=0, x=[1,2)y=1, x=[2,3)y=2...\\ &Area=0+1+2+3+4=10 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [61-70]  (0) 2019.10.23
Integral100 [51-60]  (1) 2019.10.22
Integral100 [31-40]  (0) 2019.10.16
Integral100 [21-30]  (1) 2019.10.15
Integral100 [11-20]  (1) 2019.10.13

+ Recent posts