반응형
integral_br_71

71. 1/(cbrt(x)+1)dx\int 1/(cbrt(x)+1)dx

1x3+1dx(u=x3,du=13x23dx=13x23dx=13u2dx)=3u2u+1du=3u21+1u+1du=3(u1)(u+1)u+1du+31u+1du=3(12u2u)+3lnu+1=32u23u+3lnu+1+C=32x323x3+3lnx3+1+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x}+1}dx \\ &(u=\sqrt[3]{x}, du=\frac{1}{3\sqrt[3]{x^2}}dx=\frac{1}{3}x^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u+1}du=3\int \frac{u^2-1+1}{u+1}du\\ &=3\int \frac{(u-1)(u+1)}{u+1}du+3\int\frac{1}{u+1}du \\ &=3(\frac{1}{2}u^2-u)+3ln|u+1|\\ &=\frac{3}{2}u^2-3u+3ln|u+1|+C\\ &=\frac{3}{2}\sqrt[3]{x}^2-3\sqrt[3]{x}+3ln|\sqrt[3]{x}+1|+C\\ \end{aligned}
Alt.
(u=x3+1,x=(u1)3,dx=3(u1)2du)=1u3(u1)2du=3u22u+1udu=3u2+(1/u)du=3(12u22u+lnu)=32(x3+1)26(x3+1)+3lnx3+1+C (u=\sqrt[3]{x}+1, x=(u-1)^3, dx=3(u-1)^2du)\\ =\int \frac{1}{u} 3(u-1)^2du\\ =3\int \frac{u^2-2u+1}{u} du=3\int u-2+(1/u) du\\ =3(\frac{1}{2}u^2-2u+ln|u|)\\ =\frac{3}{2}(\sqrt[3]{x}+1)^2-6(\sqrt[3]{x}+1)+3ln|\sqrt[3]{x}+1|+C


72. 1cbrt(x+1)dx\int \frac{1}{cbrt(x + 1)}dx

1x+13dx(u=x+13,du=13(x+1)23dx=13(x+1)23dx=13u2dx)=3u2udu=3udu=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &(u=\sqrt[3]{x+1}, du=\frac{1}{3\sqrt[3]{(x+1)^2}}dx=\frac{1}{3}(x+1)^{-\frac{2}{3}}dx=\frac{1}{3}u^{-2}dx)\\ &=3\int \frac{u^2}{u}du=3\int u du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}
Alt.
(u=x+1)
1x+13dx=u13du=32u2+C=32(x+1)23+C \begin{aligned} &\int \frac{1}{\sqrt[3]{x+1}}dx \\ &=\int u^{-\frac{1}{3}}du \\ &=\frac{3}{2}u^2+C\\ &=\frac{3}{2}(x+1)^{\frac{2}{3}}+C \end{aligned}


73. (sin(x)+cos(x))2dx\int (sin(x)+cos(x))^2 dx

(sin(x)+cos(x))2dx=1+2sin(x)cos(x)dx=x+sin(2x)dx=x12cos(2x)+C \begin{aligned} &\int (sin(x)+cos(x))^2dx \\ &=\int 1+2sin(x)cos(x)dx=x+\int sin(2x) dx\\ &=x-\frac{1}{2}cos(2x)+C \end{aligned}


74. 2xln(1+x)dx\int 2xln(1+x) dx

2xln(1+x)dx=2xln(1+x)dx(ln쪽을 미분하는 방향으로 부분적분)=2(ln(1+x)12x211+x12x2dx)=ln(1+x)x2x21+xdx=ln(1+x)x2x21+11+xdx=ln(1+x)x2x1+11+xdx=ln(1+x)x212x2+xln(1+x)+C \begin{aligned} &\int 2xln(1+x) dx =2\int xln(1+x) dx\\ & \text{(ln쪽을 미분하는 방향으로 부분적분)}\\ &=2( ln(1+x)\frac{1}{2}x^2-\int \frac{1}{1+x}\frac{1}{2}x^2dx )\\ &= ln(1+x)x^2-\int \frac{x^2}{1+x}dx = ln(1+x)x^2-\int \frac{x^2-1+1}{1+x}dx\\ &= ln(1+x)x^2-\int x-1+\frac{1}{1+x}dx\\ &= ln(1+x)x^2-\frac{1}{2}x^2+x-ln(1+x)+C\\ \end{aligned}


75. 1/(x(1+sin2ln(x)))dx\int 1/(x(1+sin^2ln(x)))dx

1x(1+sin2ln(x))dx(u=ln(x),du=1xdx:1/xln(x).)=du1+sin2u:(sin,(),cos.sec,tan.)=sec2usec2u+tan2udu=sec2u1+2tan2udu,(t=tanu,dt=sec2udu)=dt1+2t2,(t=tanu,dt=sec2udu)=12arctan2t=12arctan(2tan(ln(x)))+C \begin{aligned} &\int \frac{1}{x(1+sin^2ln(x))} dx \\ &( u=ln(x), du=\frac{1}{x}dx : 1/x과 ln(x)에서 치환 착안.)\\ &=\int \frac{du}{1+sin^2u} : (sin에 대해 치환, 변환(반각)해보고, cos으로 나눠도 본다.\\ & sec, tan을 만들 수 있다는 것을 착안.)\\ &=\int \frac{sec^2u}{sec^2u+tan^2u}du\\ &=\int \frac{sec^2u}{1+2tan^2u}du, (t=tanu, dt=sec^2udu)\\ &=\int \frac{dt}{1+2t^2}, (t=tanu, dt=sec^2udu)\\ &=\frac{1}{\sqrt{2}}arctan {\sqrt{2}t}=\frac{1}{\sqrt{2}}arctan({\sqrt{2} tan(ln(x))})+C \end{aligned}


76. sqrt((1x)/(1+x))dx\int sqrt((1-x)/(1+x))dx

Try
1x1+xdx(전체치환? 일부치환. 분자분모곱, pm 등)(u=1x1+x,du=121+x1x1x+1+x12x+x2dx)(du=121+x1x2(1x)2dx=1u(1x)2dx)(u2=1x1+x,xu2+x=1u2,x=1u21+u2)=u2(1x)2du=u2(11u21+u2)2du=u2(2u21+u2)2du=4u6(11+u2)2du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(\text{전체치환? 일부치환. 분자분모곱, pm 등})\\ &( u = \sqrt{\frac{1-x}{1+x}}, du=\frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{1-x+1+x}{1-2x+x^2}dx)\\ &( du = \frac{1}{2}\sqrt{\frac{1+x}{1-x}}\frac{2}{(1-x)^2}dx=\frac{1}{u(1-x)^2}dx)\\ &(u^2=\frac{1-x}{1+x}, xu^2+x=1-u^2, x=\frac{1-u^2}{1+u^2} )\\ &=\int u^2(1-x)^2 du =\int u^2(1-\frac{1-u^2}{1+u^2})^2du\\ &=\int u^2(\frac{2u^2}{1+u^2})^2 du = \int 4u^6(\frac{1}{1+u^2})^2du\\ \end{aligned}
Try
1x1+xdx(u=1x1+x,du=1x(1x)1+2x+x2dx=2(1+x)2dx)(xu+u=1x,x(u+1)=1u,x=1u1+u)=12u(1+x2)du=12u(1+(12u+u21+2u+u2)2)du=12u(2+2u21+2u+u2)2du=2u(1+u2)2(1+u)4du \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx \\ &(u=\frac{1-x}{1+x}, du=\frac{-1-x-(1-x)}{1+2x+x^2}dx=\frac{-2}{(1+x)^2}dx)\\ &( xu+u=1-x, x(u+1)=1-u, x=\frac{1-u}{1+u})\\ &=-\frac{1}{2}\int \sqrt{u} (1+x^2) du = -\frac{1}{2}\int \sqrt{u} (1+(\frac{1-2u+u^2}{1+2u+u^2})^2) du \\ &=-\frac{1}{2}\int \sqrt{u} (\frac{2+2u^2}{1+2u+u^2})^2 du \\ &=-2\int\sqrt{u}\frac{(1+u^2)^2}{(1+u)^4}du \end{aligned}
Solve
1x1+xdx=(1x)(1x)(1+x)(1x)dx=(1x)21x2dx=1x1x2dx=11x2dxx1x2dx(u=1x2,du=2xdx)=sin1x+121udu=sin1x+12u12du=sin1x+1x2+C \begin{aligned} &\int \sqrt{\frac{1-x}{1+x}} dx =\int \sqrt{\frac{(1-x)(1-x)}{(1+x)(1-x)}} dx\\ &=\int \sqrt{\frac{(1-x)^2}{1-x^2}} dx =\int \frac{1-x}{\sqrt{1-x^2}}dx\\ &=\int \frac{1}{\sqrt{1-x^2}}dx-\int \frac{x}{\sqrt{1-x^2}}dx\\ & (u=1-x^2, du=-2xdx)\\ &=\sin^{-1}x+\frac{1}{2}\int\frac{1}{\sqrt{u}}du=\sin^{-1}x+\frac{1}{2}\int u^{-\frac{1}{2}}du\\ &=\sin^{-1}x+\sqrt{1-x^2}+C \end{aligned}


77. xx/ln(x)dx\int x^{x/ln(x)}dx

Interesting…
xxln(x)dx((xln(x))=ln(x)1(ln(x))2)(y=xxln(x),ln(y)=xln(x)ln(x))(1yy=ln(x)1(ln(x))2ln(x)+xln(x)1x)(1yy=ln(x)1ln(x)+1ln(x)=1)y=y=xxln(x)+C \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx\\ &( (\frac{x}{ln(x)})'=\frac{ln(x)-1}{(ln(x))^2})\\ &(y=x^{\frac{x}{ln(x)}}, ln(y)=\frac{x}{ln(x)}ln(x))\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{(ln(x))^2}ln(x)+\frac{x}{ln(x)}\frac{1}{x})\\ &( \frac{1}{y}y'= \frac{ln(x)-1}{ln(x)}+\frac{1}{ln(x)}=1)\\ &y'=y\\ &=x^{\frac{x}{ln(x)}}+C \end{aligned}
Alt.
xxln(x)dx=(elnx)xln(x)dx=exdx=ex+C(xxln(x)=ex) \begin{aligned} &\int x^{\frac{x}{ln(x)}} dx = \int (e^{ln x})^{\frac{x}{ln(x)}}dx=\int e^x dx\\ &= e^x+C\\ &(x^{\frac{x}{ln(x)}}=e^x) \end{aligned}


78. arcsin(sqrt(x))dx\int arcsin(sqrt(x))dx

arcsin(x)dx( 루트부분을 치환. 부분적분)(u=x,u2=x,2udu=dx)=2usin1(u)du=(arcsin)=2(sin1u12u211u212u2du)=u2sin1uu21u2du=u2sin1u+1+1u21u2du=xsin1x11u2du+1u2du=xsin1xsin1x+1u2du \begin{aligned} &\int arcsin(\sqrt x) dx \\ &( \text{ 루트부분을 치환. 부분적분} )\\ &( u = \sqrt x, u^2=x, 2udu=dx)\\ &=2\int u sin^{-1}(u) du= (arcsin은 미분가능)\\ &=2( sin^{-1}u \frac{1}{2}u^2-\int \frac{1}{\sqrt{1-u^2}}\frac{1}{2}u^2 du )\\ &=u^2sin^{-1}u-\int \frac{u^2}{\sqrt{1-u^2}}du\\ &=u^2sin^{-1}u+\int \frac{-1+1-u^2}{\sqrt{1-u^2}}du\\ &=x\sin^{-1}\sqrt{x}-\int \frac{1}{\sqrt{1-u^2}}du+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ \end{aligned}

1u2du,(u=sinθ,du=cosθdθ)=cos2θdθ=121+cos2θdθ=12θ+12cos2θdθ=12θ+14sin2θ=12sin1u+12sinθcosθ=12sin1u+12u1u2 \int \sqrt{1-u^2}du, (u=sin\theta, du=cos\theta d\theta)\\ =\int cos^2\theta d\theta=\frac{1}{2}\int1+cos2\theta d\theta=\frac{1}{2}\theta+\frac{1}{2}\int cos 2\theta d\theta\\ =\frac{1}{2}\theta+\frac{1}{4} sin 2\theta =\frac{1}{2}sin^{-1}u+\frac{1}{2} sin \theta cos \theta\\ =\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}

arcsin(x)dx=xsin1xsin1x+1u2du=xsin1xsin1x+12sin1u+12u1u2=xsin1xsin1x+12sin1x+12x1x=(sin1x)(x12)+12x(1x)+C \begin{aligned} &\int arcsin(\sqrt x) dx \\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\int \sqrt{1-u^2}du\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}u+\frac{1}{2} u \sqrt{1-u^2}\\ &=x\sin^{-1}\sqrt{x}-\sin^{-1}\sqrt{x}+\frac{1}{2}sin^{-1}\sqrt{x}+\frac{1}{2} \sqrt{x} \sqrt{1-x}\\ &=(\sin^{-1}x)(x-\frac{1}{2})+\frac{1}{2}\sqrt{x(1-x)}+C \end{aligned}


79. arctan(x)dx\int arctan(x) dx

arctan(x)dx(y=arctan(x),x=tan(y),dx=sec2ydy)=ysec2ydy()=ytan(y)tan(y)dy=xarctanx+lncosy+C=xarctanx+ln11+x2+C \begin{aligned} &\int arctan(x) dx \\ &(y=arctan(x), x=tan(y), dx=sec^2ydy)\\ &=\int y sec^2y dy (부분적분)\\ &=y \tan(y)-\int tan(y) dy=x\arctan{x}+ln|cos y|+C\\ &=x\arctan{x}+ln|\frac{1}{\sqrt{1+x^2}}|+C\\ \end{aligned}
Alt.
arctan(x)dx(we know11+x2dx=arctan(x))=arctan(x)xx1+x2dx(x2)=xarctanx12ln1+x2+C \begin{aligned} &\int arctan(x) dx \\ &(\text{we know} \int \frac{1}{1+x^2} dx=arctan(x))\\ &=arctan(x) x -\int \frac{x}{1+x^2} dx (x^2을 치환)\\ &=x \arctan{x}-\frac{1}{2}ln|1+x^2|+C \end{aligned}


80. 05f(x)dx\int_0^5 f(x) dx

if x<=2, f(x)=10
if x>=2, f(x)=3x223x^2-2
=02f(x)dx+25f(x)dx=0210dx+253x22dx=20+[x32x]25=20+(1154)=131 \begin{aligned} &=\int_0^2 f(x)dx+ \int_2^5 f(x) dx \\ &=\int_0^2 10 dx+ \int_2^5 3x^2-2 dx \\ &=20+\bigg[x^3-2x \bigg ]_2^5=20+(115-4)\\ &=131 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [90]  (2) 2019.10.27
Integral100 [81-89]  (1) 2019.10.26
Integral100 [61-70]  (0) 2019.10.23
Integral100 [51-60]  (0) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21
반응형
integral_br_51

51. sec6xdx\int \sec^6x dx

sec6xdx=sec2xsec4xdx(D(tanx)sec2x)=sec4xtanx4sec3xsecxtanxtanxdx=sec4xtanx4sec4xtan2xdx=sec4xtanx4sec4xsec2xsec4xdx=sec4xtanx4sec6xdx+4sec4xdx5sec6xdx=sec4xtanx+4sec4dxsec4dx=sec2x(1+tan2x)dx=sec2xdx+sec2xtan2xdx=tanx+sec2xtan2xdxsec2xtan2xdx(u=tanx,du=sec2xdx)=u2du=13u3=13tan3x5sec6xdx=sec4xtanx+4sec4dx=sec4xtanx+4(tanx+13tan3x)sec6xdx=15sec4xtanx+45tanx+415tan3x+C=15(1+2tan2x+tan4x)tanx+45tanx+415tan3x+C=15tan5x+55tanx+1015tan3x+C=15tan5x+23tan3x+tanx+C \begin{aligned} &\int \sec^6x dx =\int \sec^2x sec^4 x dx\\ &(D( tanx ) \rightarrow sec^2x) \\ &=sec^4x tanx-\int 4sec^3xsecxtanxtanxdx\\ &=sec^4xtanx-4\int sec^4xtan^2x dx\\ &=sec^4xtanx-4\int sec^4xsec^2x-sec^4x dx\\ &=sec^4xtanx-4\int sec^6x dx+4\int sec^4x dx\\ &5\int sec^6x dx = sec^4xtanx+4\int sec^4 dx\\ &\int sec^4 dx=\int \sec^2x (1+\tan^2x) dx=\int sec^2x dx+\int sec^2xtan^2xdx\\ &=\tan{x}+\int sec^2xtan^2x dx\\ &\int sec^2xtan^2x dx (u=tan x, du= sec^2x dx)\\ &=\int u^2 du = \frac{1}{3}u^3=\frac{1}{3}\tan^3{x}\\ &5\int sec^6x dx = sec^4xtanx+4\int sec^4 dx\\ &=sec^4xtanx+4(tan x+\frac{1}{3}\tan^3{x})\\ &\therefore \int sec^6x dx=\frac{1}{5}sec^4xtanx +\frac{4}{5}tanx+\frac{4}{15}tan^3x +C\\ &=\frac{1}{5}(1+2tan^2x+tan^4x)tanx +\frac{4}{5}tanx+\frac{4}{15}tan^3x +C\\ &=\frac{1}{5}tan^5x+\frac{5}{5}tanx+\frac{10}{15}tan^3x +C\\ &=\frac{1}{5}tan^5x+\frac{2}{3}tan^3x+tan {x} +C\\ \end{aligned}
Alternative

sec6xdx=(sec2x)2sec2xdx=(1+tan2x)2sec2xdx(u=tanx,du=sec2xdx)=(1+u2)2du=u4+2u2+1du=15u5+23u3+u=15tan5x+23tan3x+tanx+C \begin{aligned} &\int \sec^6x dx =\int (\sec^2x)^2 sec^2 x dx=\int (1+\tan^2x)^2 sec^2 x dx\\ &(u=tanx, du=sec^2x dx)\\ &=\int (1+u^2)^2 du = \int u^4+2u^2+1du=\frac{1}{5}u^5+\frac{2}{3}u^3+u\\ &=\frac{1}{5}tan^5x+\frac{2}{3}tan^3x+tan {x} +C\\ \end{aligned}


52. 1/(5x2)4dx\int 1/(5x - 2)^4 dx

1(5x2)4dx(u=5x2,du=5dx)=15u4du=115u3=115(5x2)3+C \begin{aligned} &\int \frac{1}{(5x - 2)^4}dx (u=5x-2, du=5dx)\\ &=\frac{1}{5}\int u^{-4}du=-\frac{1}{15}u^{-3}=-\frac{1}{15}(5x-2)^{-3}+C \end{aligned}


53. ln(1+x2)dx\int ln (1+x^2) dx

ln(1+x2)dx=1ln(1+x2)dx=(ln1+x2)(x)2x21+x2dx=xln1+x22x2+111+x2dx=xln1+x22111+x2dx=xln1+x22x+211+x2dx=xln1+x22x+2arctanx+C \begin{aligned} &\int ln (1+x^2)dx =\int 1*ln (1+x^2)dx \\ &=(ln|1+x^2|)(x)-\int \frac{2x^2}{1+x^2} dx\\ &=xln|1+x^2|-2\int \frac{x^2+1-1}{1+x^2} dx\\ &=xln|1+x^2|-2\int 1-\frac{1}{1+x^2} dx\\ &=xln|1+x^2|-2x+2\int\frac{1}{1+x^2} dx\\ &=xln|1+x^2|-2x+2 \arctan{x}+C\\ \end{aligned}


54. 1x4+xdx\int \frac{1}{x^4+x} dx

1x4+xdx=1x(x3+1)dx=1x(x+1)(x2x+1)dx=1x+13x+1+23x+13x2x+1dx=lnx13lnx+123x12(x12)2+34dx=lnx13lnx+113lnx2x+1+C=13lnx313lnx+113lnx2x+1+C=13lnx31(x+1)1(x2x+1)+C=13lnx3x3+1+C=13lnx3+1x3+C=13ln1+x3+C \begin{aligned} &\int \frac{1}{x^4+x} dx =\int \frac{1}{x(x^3+1)}dx \\ &=\int \frac{1}{x(x+1)(x^2-x+1)}dx \\ &=\int \frac{1}{x}+\frac{-\frac{1}{3}}{x+1}+\frac{-\frac{2}{3}x+\frac{1}{3}}{x^2-x+1}dx \\ &=ln|x|-\frac{1}{3}ln|x+1|-\frac{2}{3} \int \frac{x-\frac{1}{2}}{(x-\frac{1}{2})^2+\frac{3}{4}}dx\\ &=ln|x|-\frac{1}{3}ln|x+1|-\frac{1}{3} ln |x^2-x+1|+C\\ &=\frac{1}{3}ln|x^3|-\frac{1}{3}ln|x+1|-\frac{1}{3} ln |x^2-x+1|+C\\ &=\frac{1}{3}ln|x^3\frac{1}{(x+1)}\frac{1}{(x^2-x+1)}+C\\ &=\frac{1}{3}ln|\frac{x^3}{x^3+1}|+C=-\frac{1}{3}ln|\frac{x^3+1}{x^3}|+C\\ &=-\frac{1}{3}ln|1+x^{-3}|+C \end{aligned}
Alternative (미분형태가 나오도록… 차수를 1차이나게…)
1x4+xdx=1x4(1+x3)dx=x41+x3dx(u=1+x3,du=3x4dx)=131udx=13lnu=13ln1+x3+C \begin{aligned} &\int \frac{1}{x^4+x} dx =\int \frac{1}{x^4(1+x^{-3})}dx \\ &=\int \frac{x^{-4}}{1+x^{-3}}dx (u=1+x^{-3}, du=-3x^{-4}dx)\\ &=-\frac{1}{3}\int \frac{1}{u}dx=-\frac{1}{3}ln|u|=-\frac{1}{3}ln|1+x^{-3}|+C \end{aligned}


55. 1tanx1+tanxdx\int \frac{1-tan x }{1+tan x} dx

1tanx1+tanxdx=cosxsinxcosx+sinxdx=cos2xsin2x(cosx+sinx)2dxAlt.=lncosx+sinx+C=cos(2x)1+sin(2x)dx(u=1+sin(2x),du=2cos(2x)dx)=121udu=12ln1+sin(2x)+C \begin{aligned} &\int \frac{1-tan x }{1+tan x} dx \\ &=\int \frac{cos x-sin x }{cos x+sin x} dx =\int \frac{cos^2 x-sin^2 x }{(cos x+sin x)^2} dx \\ Alt. &= ln|cosx+sinx|+C\\ &=\int \frac{cos (2x) }{1+sin(2x)} dx (u=1+sin(2x), du = 2cos(2x)dx)\\ &=\frac{1}{2}\int \frac{1}{u}du\\ &=\frac{1}{2}ln|1+sin(2x)|+C \end{aligned}

12ln1+sin(2x)=ln1+2sinxcosx=lncos2x+sin2x+2sinxcosx=lncosx+sinx \frac{1}{2}ln|1+sin(2x)|=ln|\sqrt{1+2sinxcosx}|\\ =ln|\sqrt{cos^2x+sin^2x+2sinxcosx}|\\ =ln|cos x + sin x|


56. xsec(x)tan(x)dx\int x·sec(x)·tan(x) dx

xsecxtanxdxdx(Dsecsecxtanx)=xsecxsecxdx=xsecxlnsecx+tanx+C \begin{aligned} &\int x \sec{x} \tan{x} dx dx (D sec \rightarrow sec x tan x) \\ &=x sec x - \int sec x dx\\ &=x sec x - ln|sec x+tan x | + C\\ \end{aligned}
Check…
D(xsecxlnsecx+tanx)=secx+x(secxtanx)secxtanx+sec2xsecx+tanx=secx+xsecxtanxsecx=xsecxtanx D(x \sec x - ln|\sec x+\tan x | ) \\ = \sec x+x(\sec x \tan x)-\frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x } \\ = \sec x + x \sec x \tan x - \sec x = x \sec x \tan x


57. arcsec(x)dx\int arcsec(x) dx

arcsec(x)dx(y=arcsec(x),x=sec(y),dx=sec(y)tan(y)dy)=ysec(y)tan(y)dy=ysec(y)sec(y)dy=ysec(y)lnsec(y)+tan(y)(R.Tangle=y,a=1,h=x,o=sqrt(x21))=xarcsec(x)lnx+tan(arcsec(x))+C=xarcsec(x)lnx+x21+C \begin{aligned} &\int arcsec(x) dx \\ &( y=arcsec(x), x=sec(y), dx=sec(y)tan(y)dy )\\ &=\int y sec(y) tan (y) dy = y sec(y) - \int sec(y) dy \\ &=y sec(y) - ln | sec(y)+tan(y) | \\ &(R.T angle=y, a=1, h=x, o=sqrt(x^2-1) )\\ &=x arcsec(x)-ln |x+tan(arcsec(x)) |+C \\ &=x arcsec(x)-ln |x+\sqrt{x^2-1} |+C \\ \end{aligned}
Alt.

D(arcsinx)(y=arcsec(x),x=sec(y),dx=sec(y)tan(y)dy)=dydx=1sec(y)tan(y)=cos2ycscy=(1x)2xx21=1xx21 D(\arcsin{x}) \\ ( y=arcsec(x), x=sec(y), dx=sec(y)tan(y)dy )\\ =\frac{dy}{dx} = \frac{1}{sec(y)tan(y)}=cos^2y \csc y\\ =(\frac{1}{x})^2 \frac{x}{\sqrt{x^2-1}}=\frac{1}{x\sqrt{x^2-1}}

arcsec(x)dx=arcsec(x)(x)1xx21xdx=xarcsec(x)1x21dx \int arcsec(x) dx = arcsec(x)(x)-\int \frac{1}{x \sqrt{x^2-1}} x dx \\ =x arcsec(x)-\int \frac{1}{\sqrt{x^2-1}}dx

1x21dx(x=secθ,dx=secθtanθdθ)=1tanθsecθtanθdθ=secθdθ=lnsecθ+tanθ \int \frac{1}{\sqrt{x^2-1}}dx (x=sec\theta, dx=sec\theta tan\theta d \theta)\\ =\int \frac{1}{tan \theta} sec\theta tan\theta d \theta\\ =\int sec \theta d \theta =ln|sec \theta+tan \theta|

arcsec(x)dx=xarcsec(x)lnsecθ+tanθ(R.Tangle=θ,a=1,h=x,o=sqrt(x21))arcsec(x)dx=xarcsec(x)lnx+x21+C \int arcsec(x) dx =x arcsec(x)-ln | sec \theta+tan\theta| \\ (R.T angle=\theta, a=1, h=x, o=sqrt(x^2-1))\\ \int arcsec(x) dx =x arcsec(x)-ln | x+\sqrt{x^2-1}| +C


58. (1cos(x))/(1+cos(x))dx\int (1 - cos(x))/(1 + cos(x)) dx

1cos(x)1+cos(x)dx=12cos(x)+cos2x1cos2xdx=12cos(x)+cos2xsin2xdx=1sin2xdx2cosxsin2xdx+cos2xsin2xdx \begin{aligned} &\int \frac{1 - cos(x)}{1 + cos(x)}dx \\ &=\int \frac{1-2cos(x)+cos^2x}{1-cos^2x} dx =\int \frac{1-2cos(x)+cos^2x}{sin^2x} dx \\ &=\int \frac{1}{sin^2x}dx-2\int \frac{cos x}{sin^2 x}dx+\int \frac{cos^2x}{sin^2x} dx \end{aligned}

1sin2xdx=cos2x+sin2xsin2x=cos2xsin2xdx+x=cot2xdx+x=csc2x1dx+x=csc2xdx=cotxcosxsin2xdx(u=sinx,du=cosxdx)=duu2=1u=cscxcos2xsin2xdx=cot2xdx=csc2x1dx=cotxx \int \frac{1}{sin^2x} dx=\int \frac{cos^2x + sin^2x}{sin^2x}\\ =\int \frac{cos^2x}{sin^2x} dx +x = \int cot^2x dx +x\\ =\int csc^2x-1 dx+x =\int csc^2x dx = -cot x \\ \int \frac{cos x}{sin^2x} dx (u=sin x, du=cos x dx)\\ =\int \frac{du}{u^2} = -\frac{1}{u}=-csc x\\ \int \frac{cos^2x}{sin^2x} dx =\int cot^2x dx =\int csc^2x-1dx\\ =-cot x - x

=1sin2xdx2cosxsin2xdx+cos2xsin2xdx=cotx+2cscxcotxx=2cscx2cotxx+C=2(cscxcotx)x+C=2(1cosxsinx)x+C =\int \frac{1}{sin^2x}dx-2\int \frac{cos x}{sin^2 x}dx+\int \frac{cos^2x}{sin^2x} dx \\ = -cot x +2 csc x -cot x - x\\ =2 csc x -2cot x -x +C =2 (csc x -cot x) -x +C\\ =2(\frac{1-cos x}{sin x})-x+C\\

=2(1cosx2sinx2)x+C=2(sin2x22sinx2cosx2/2)x+C=2tan(x2)x+C =2(\frac{\frac{1-cosx}{2}}{\frac{sinx}{2}})-x+C\\ =2(\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}/2} )-x+C\\ =2tan(\frac{x}{2})-x+C

Alt.
1cos(x)1+cos(x)dx(sin2(x2)=1cosx2,cos2(x2)=1+cosx2)=sin2(x2)cos2(x2)dx=1cos2(x2)cos2(x2)dx=sec2x2dxx=2tan(x2)x+C \begin{aligned} &\int \frac{1 - cos(x)}{1 + cos(x)}dx \\ &( sin^2(\frac{x}{2})=\frac{1-cosx}{2} , cos^2(\frac{x}{2})=\frac{1+cosx}{2} )\\ &=\int \frac{sin^2(\frac{x}{2})}{cos^2(\frac{x}{2})} dx =\int \frac{1-cos^2(\frac{x}{2})}{cos^2(\frac{x}{2})} dx \\ &=\int sec^2{\frac{x}{2}} dx-x \\ &=2tan(\frac{x}{2})-x+C \end{aligned}


59. (x2)sqrt(x+4)dx\int (x^2)sqrt(x + 4)dx

x2x+4dx(u=x+4,du=12x+4dx)=(u24)2u2udu=2u2(u48u2+16)du=2u616u4+32u2du=27u7165u5+323u3+C=27(x+4)72165(x+4)52+323(x+4)32+C \begin{aligned} &\int x^2\sqrt{x+4}dx \\ &(u=\sqrt{x+4}, du=\frac{1}{2\sqrt{x+4}}dx)\\ &=\int(u^2-4)^2u 2u du=\int 2u^2(u^4-8u^2+16)du\\ &=\int 2u^6-16u^4+32u^2 du\\ &=\frac{2}{7}u^7-\frac{16}{5}u^5+\frac{32}{3}u^3+C\\ &=\frac{2}{7}(x+4)^\frac{7}{2}-\frac{16}{5}(x+4)^\frac{5}{2}+\frac{32}{3}(x+4)^\frac{3}{2}+C\\ \end{aligned}


60. 11sqrt(4x2)dx\int_{-1}^1 sqrt(4 - x^2) dx

114x2dx=2014x2dx(x=2sinθ,dx=2cosθdθ)=20π/62cosθ2cosθdθ=8cos2θdθ=41+cos2θdθ=4θ+2sin2θ=4(π/6)+2(3/2)=2π3+3 \begin{aligned} &\int_{-1}^1 \sqrt{4 - x^2} dx = 2\int_0^1 \sqrt{4 - x^2} dx \\ &( x=2sin\theta, dx=2cos\theta d\theta)\\ &=2\int_0^{\pi/6} 2cos \theta2cos\theta d\theta = 8\int cos^2 \theta d\theta\\ &=4\int 1+cos2\theta d\theta = 4\theta+2sin2\theta \\ &=4(\pi/6)+2(\sqrt{3}/2)\\ &=\frac{2\pi}{3}+\sqrt{3} \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [71-80]  (0) 2019.10.24
Integral100 [61-70]  (0) 2019.10.23
Integral100 [41-50]  (0) 2019.10.21
Integral100 [31-40]  (0) 2019.10.16
Integral100 [21-30]  (1) 2019.10.15
반응형
integral_br_31

31. 1xx3/2dx\int \frac{1}{\sqrt{x-x^{3/2}}}dx

1xx3/2dx=1x1x1/2dx=x1/21x1/2dx(u=1x1/2,du=12x1/2dx)=21u1/2du=2u1/2du=2(2)u1/2=4u=41x+C \begin{aligned} &\int \frac{1}{\sqrt{x-x^{3/2}}}dx\\ &=\int \frac{1}{\sqrt{x}\sqrt{1-x^{1/2}}}dx\\ &=\int \frac{x^{-1/2}}{\sqrt{1-x^{1/2}}}dx\\ &(u=1-x^{1/2}, du=-\frac{1}{2}x^{-1/2} dx) \\ &=-2\int \frac{1}{u^{1/2}} du=-2\int u^{-1/2} du\\ &=-2 (2)u^{1/2}=-4\sqrt{u}\\ &=-4\sqrt{1-\sqrt{x}}+C \end{aligned}


32. 1xx2dx\int \frac{1}{\sqrt{x-x^2}}dx

1xx2dx=1xx11dx=x1x11dx(u=x11,du=x2dx)=x1ux2du \begin{aligned} &\int \frac{1}{\sqrt{x-x^2}}dx \\ &=\int \frac{1}{x\sqrt{x^{-1}-1}} dx =\int \frac{x^{-1}}{\sqrt{x^{-1}-1}} dx\\ &(u=x^{-1}-1, du=-x^{-2}dx)\\ &=-\int \frac{x^{-1}}{\sqrt{u}}x^2du \end{aligned}

1xx2dx=1x1xdx(u=x,du=12xdx)=1u1u22udu=211u2du \begin{aligned} &\int \frac{1}{\sqrt{x-x^2}}dx \\ &=\int \frac{1}{\sqrt{x}\sqrt{1-x}} dx \\ &(u=\sqrt{x}, du=\frac{1}{2\sqrt{x}}dx)\\ &=\int \frac{1}{u\sqrt{1-u^2}} 2udu\\ &=2\int \frac{1}{\sqrt{1-u^2}}du \\ \end{aligned}
Right Triangle : h=1, o=u, a=sqrt(1-u^2) ,sinθ\theta = u
=21cosθcosθdθ=2θ=2arcsinu+C=2arcsinx+C =2\int \frac{1}{\cos \theta} \cos \theta d\theta =2\theta = 2 \arcsin{u}+C\\ =2\arcsin{\sqrt{x}}+C


33. e2lnxdx\int e^{2lnx} dx

e2lnxdx=elnxelnxdx=(elnx)2dx=x2dxor=elnx2dx=x2dx=13x3+C \begin{aligned} &\int e^{2lnx} dx\\ &=\int e^{lnx}e^{lnx} dx =\int (e^{lnx})^2 dx =\int x^2 dx\\ or&=\int e^{lnx^2} dx =\int x^2 dx\\ &=\frac{1}{3}x^3+C \end{aligned}


34. lnx/sqrtxdx\int lnx/sqrt x dx

lnxxdx(u=x,du=12xdx)=2lnu2du=4lnudu=4(ulnuu)=4(xlnxx)+C=2xln(x)4x+C \begin{aligned} &\int \frac{\ln x}{\sqrt x}dx \\ &(u=\sqrt x , du = \frac{1}{2\sqrt x}dx)\\ &=2\int ln u^2 du=4\int ln u du \\ &=4 (uln |u| -u ) \\ &=4 (\sqrt x ln |\sqrt x| - \sqrt x ) + C\\ &=2\sqrt x ln (x) - 4\sqrt x + C\\ \end{aligned}

lnxdx=(lnx)x1/xxdx=x(lnx)x \int ln x dx = (ln x) x - \int 1/x * x dx = x(lnx)-x


35. 1ex+exdx\int \frac{1}{e^x+e^{-x}} dx

1ex+exdxwe know  coshx=ex+ex2=121coshxdx=exe2x+1dx(u=ex,du=exdx)=duu2+1=arctanu=arctanex+C \begin{aligned} &\int \frac{1}{e^x+e^{-x}} dx \\ & \text{we know} \; cosh x=\frac{e^x+e^{-x}}{2}\\ &=\frac{1}{2}\int \frac{1}{cosh x} dx \\ &=\int \frac{e^x}{e^{2x}+1} dx (u=e^x, du=e^xdx)\\ &=\int \frac{du}{u^2+1} =\arctan {u}\\ &=\arctan{e^x}+C \end{aligned}


36. log2xdx\int log_2 x dx

log2xdx=lnxln2dx=1ln2lnxdx=1ln2(xlnxx)+C=xlog2xxln2+C \begin{aligned} &\int log_2 x dx =\int \frac{ln x}{ln 2} dx\\ &=\frac{1}{ln 2}\int ln x dx\\ &=\frac{1}{ln 2}(x ln x - x)+C\\ &=x log_2x - \frac{x}{ln 2} + C\\ \end{aligned}


37. x3sin(2x)dx\int x^3*sin(2x) dx

x3sin2xdx=x3(12cos2x)3x2(14sin2x)+6x(18cos2x)6(116sin2x)=cos2x(12x3+34x)+sin2x(34x238)+C \begin{aligned} &\int x^3\sin{2x} dx \\ &=x^3(-\frac{1}{2}cos2x)-3x^2(-\frac{1}{4}sin2x)+6x(\frac{1}{8}cos2x)-6(\frac{1}{16}sin2x)\\ &=cos 2x (-\frac{1}{2}x^3+\frac{3}{4}x)+sin2x(\frac{3}{4}x^2-\frac{3}{8})+C \end{aligned}


38. x2[1+x3]1/3dx\int x^2[1+x^3]^{1/3} dx

x21+x33dx(u=1+x3,du=3x2dx)=13u3du=13u13du=1334u1+13=14uu3=14(1+x3)1+x33+C \begin{aligned} &\int x^2 \sqrt[3]{1+x^3} dx \\ &(u=1+x^3, du=3x^2dx) \\ &=\frac{1}{3}\int \sqrt[3]u du = \frac{1}{3}\int u^{\frac{1}{3}} du \\ &=\frac{1}{3} \frac{3}{4}u^{1+\frac{1}{3}}=\frac{1}{4}u\sqrt[3]{u}\\ &=\frac{1}{4}(1+x^3)\sqrt[3]{1+x^3}+C \end{aligned}


39. 1/(x2+4)2dx\int 1/(x^2 + 4)^2 dx

1(x2+4)2dx(x=2tany,dx=2sec2ydy,y=arctanx2)=2sec2y(4(tan2y+1))2dy=sec2y8sec4ydy=18cos2ydy=1161+cos2ydy=y16+132sin2y=116arctanx2+116sinycosy(righttriangleangle=y,h=sqrt(x2+4)a=2,o=x)=116arctanx2+116xx2+42x2+4=116arctanx2+x8(x2+4)+C \begin{aligned} &\int \frac{1}{(x^2 + 4)^2} dx \\ &(x=2tany, dx=2sec^2ydy, y=\arctan{\frac{x}{2}}) \\ &=\int \frac{2sec^2y}{(4(tan^2y+1))^2}dy=\int \frac{sec^2y}{8sec^4y}dy\\ &=\frac{1}{8}\int cos^2y dy =\frac{1}{16}\int 1+\cos{2y}dy\\ &=\frac{y}{16}+\frac{1}{32}\sin{2y}=\frac{1}{16}arctan{\frac{x}{2}}+\frac{1}{16}sin y cos y\\ &(right triangle angle=y, h=sqrt(x^2+4) a=2, o=x)\\ &=\frac{1}{16}arctan{\frac{x}{2}}+\frac{1}{16}\frac{x}{\sqrt{x^2+4}} \frac{2}{\sqrt{x^2+4}}\\ &=\frac{1}{16}arctan{\frac{x}{2}}+\frac{x}{8(x^2+4)}+C \end{aligned}


40. 12sqrt(x21)dx\int_1^2 sqrt(x^2-1) dx

12x21dx,(x=sec(y),dx=sec(y)tan(y)dy)tan2ysecytanydy=secytan2ydy(secytanyI>secy)=tanysecysec3ydy \begin{aligned} &\int_1^2 \sqrt{x^2-1} dx , (x=sec(y), dx=sec(y) tan(y) dy)\\ &\int \sqrt{\tan^2y} \sec y \tan y dy\\ &=\int \sec y \tan^2 y dy (sec y tan y -I-> sec y) \\ &=\tan y \sec y -\int \sec^3 y dy\\ \end{aligned}

sec3xdx=secxsec2xdx(sec2xI>tanx)=secxtanxsecxtanxtanxdx=secxtanxsecx(sec2x1)dx=secxtanxsec3xdx+secxdx=secxtanx+lnsecx+tanxsec3xdx=12(secxtanx+lnsecx+tanx) \int \sec^3 x dx = \int \sec x \sec^2 x dx (sec^2x-I->tan x)\\ =\sec x \tan x - \int \sec x \tan x \tan x dx\\ =\sec x \tan x - \int \sec x (\sec^2 x -1 ) dx \\ =\sec x \tan x - \int \sec^3 x dx +\int \sec x dx \\ =\sec x \tan x + ln |sec x + tan x|-\int \sec^3x dx\\ = \frac{1}{2}(\sec x \tan x + ln |sec x + tan x|)

x=sec(y), y=arcsec x, RT. angle=y, h=x, a=1, o=sqrt(x^2-1)
=tanysecysec3ydy=tanysecy12(secytany+lnsecy+tany)=12xx2112lnx21+x+C12x21dx=[12xx2112lnx21+x]12=312ln(3+2) =\tan y \sec y -\int \sec^3 y dy\\ =\tan y \sec y -\frac{1}{2}(\sec y \tan y + ln |sec y + tan y|)\\ =\frac{1}{2}x\sqrt{x^2-1}-\frac{1}{2}ln| \sqrt{x^2-1}+x|+C\\ \int_1^2 \sqrt{x^2-1} dx=\left[\frac{1}{2}x\sqrt{x^2-1}-\frac{1}{2}ln| \sqrt{x^2-1}+x|\right]_1^2\\ =\sqrt{3}-\frac{1}{2}ln(\sqrt{3}+2) \\


Author: crazyj7@gmail.com

31. [1:49:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6572s) integral of (x-x^(3/2))^-1/2 32. [1:52:37](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6757s) integral of (x-x^2)^-1/2 33. [1:56:03](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=6963s) integral of e^(2lnx) 34. [1:56:57](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7017s) integral of lnx/sqrt x 35. [2:00:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7232s) integral of 1/e^x+e^-x 36. [2:01:57](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7317s) integral of log(x) base 2 37. [2:05:15](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7515s) integral of x^3*sin2x 38. [2:08:32](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7712s) integral of x^2[1+x^3]^1/3 39. [2:12:30](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=7950s) integral of 1/(x^2 + 4)^2 40. [2:19:38](https://www.youtube.com/watch?v=dgm4-3-Iv3s&t=8378s) integral of sqrt(x^2-1) from 1 to 2

'Math' 카테고리의 다른 글

Integral100 [51-60]  (0) 2019.10.22
Integral100 [41-50]  (0) 2019.10.21
Integral100 [21-30]  (1) 2019.10.15
Integral100 [11-20]  (0) 2019.10.13
Integral100 [1-10]  (2) 2019.10.12
반응형
integral_br_21

21. sin3xcos2xdx\int \sin^3{x} \cos^2{x}dx

sin3xcos2xdx=sinxsin2xcos2xdx=sinx(1cos2x)cos2xdx(u=cosx,du=sinxdx)=(1u2)u2du=u4u2dx=15cos5x13cos3x+C \begin{aligned} &\int \sin^3{x} \cos^2{x}dx\\ &=\int \sin{x}\sin^2{x}\cos^{2}x dx\\ &=\int \sin{x}(1-\cos^2{x})\cos^{2}x dx\\ &(u=cosx, du=-sinx dx) \\ &=-\int (1-u^2)u^{2} du = \int u^4-u^2dx\\ &=\frac{1}{5}cos^5x-\frac{1}{3}cos^3x+C\\ \end{aligned}


22. 1x2x2+1dx\int \frac{1}{x^2\sqrt{x^2+1}} dx

1x2x2+1dx=1tan2θsecθsec2θdθ(x=tanθ,dx=sec2θdθ)=secθcot2θdθ=cos2θcosθsin2θdθ=cosθsin2θdθ(t=sinθ,dt=cosθdθ)=dtt2=1t=1sinθ=cscθ+C=csc(arctanx)+C=x2+1x+C \begin{aligned} &\int \frac{1}{x^2\sqrt{x^2+1}} dx\\ &=\int \frac{1}{tan^2\theta sec\theta} sec^2\theta d\theta (x=\tan{\theta}, dx=sec^2\theta d\theta) \\ &=\int sec\theta cot^2\theta d\theta =\int \frac{cos^2\theta}{cos\theta sin^2\theta} d\theta \\ &=\int \frac{cos \theta}{sin^2 \theta} d\theta (t=sin\theta, dt=cos\theta d\theta)\\ &=\int \frac{dt}{t^2} = -\frac{1}{t}=-\frac{1}{sin\theta}=-csc\theta+C\\ &=-\csc({\arctan{x}}) + C \\ &=-\frac{\sqrt{x^2+1}}{x} + C \\ \end{aligned}
Alternative

1x2x2+1dx=1x2x1+x2dx=x31+x2dx(u=1+x2,du=2x3dx)=12u1/2du=122u1/2=1+1x2+C \begin{aligned} &\int \frac{1}{x^2\sqrt{x^2+1}} dx\\ &=\int \frac{1}{x^2 x \sqrt{1+x^{-2}}} dx\\ &=\int \frac{x^{-3}}{\sqrt{1+x^{-2}}} dx (u=1+x^{-2}, du=-2x^{-3}dx)\\ &=\int -\frac{1}{2}u^{-1/2}du = -\frac{1}{2}2u^{1/2}=-\sqrt{1+\frac{1}{x^2}}+C\\ \end{aligned}


23. sinxsecxtanxdx\int \sin{x}\sec{x}\tan{x} dx

sinxsecxtanxdx=tan2xdx=sec2x1dx=1cos2xcos2xdx=sec2xdxx=tanxx+C \begin{aligned} &\int \sin{x}\sec{x}\tan{x} dx = \int \tan^2x dx =\int sec^2x -1dx\\ &=\int \frac{1-cos^2x}{cos^2x} dx = \int sec^2x dx-x\\ &=\tan{x}-x+C\\ \end{aligned}


24. sec3(x)dx\int sec^3(x)dx

sec3(x)dx=sec(x)sec2(x)dx=secxtanxsecxtanxtanxdx=secxtanxsecxtan2xdx=secxtanxsecx(sec2x1)dx=secxtanx+secxdxsec3xdx=secxtanx+lnsecx+tanxsec3xdx \begin{aligned} &\int sec^3(x)dx=\int sec(x)sec^2(x) dx\\ &= \sec x \tan x - \int \sec x \tan x \tan x dx\\ &= \sec x \tan x - \int \sec x \tan^2 x dx\\ &= \sec x \tan x - \int \sec x (sec^2x-1) dx\\ &= \sec x \tan x + \int sec x dx - \int sec^3x dx\\ &= \sec x \tan x + \ln | secx+tanx| - \int sec^3x dx \\ \end{aligned}

2sec3(x)dx=secxtanx+lnsecx+tanxsec3(x)dx=12(secxtanx+lnsecx+tanx)+C \begin{aligned} &2\int sec^3(x)dx=\sec x \tan x +\ln | secx+tanx| \\ &\therefore \int sec^3(x)dx=\frac{1}{2} (\sec x \tan x +\ln | secx+tanx|)+C \\ \end{aligned}


25. 1/(xsqrt(9x21))dx\int 1/(x*sqrt(9x^2-1)) dx

1x9x21dx(3x=secy,3dx=secytanydy)=3secytanysecytany3dy=y=sec13x+C \begin{aligned} &\int \frac{1}{x\sqrt{9x^2-1}} dx \\ &(3x=\sec{y}, 3dx=\sec y \tan y dy)\\ &=\int \frac{3}{\sec{y} \tan{y} } \frac{\sec y \tan y }{3} dy \\ &= y =\sec^{-1} 3x +C \\ \end{aligned}


26. cos(sqrt(x))dx\int cos(sqrt(x)) dx

cos(x)dx(u=x,du=12xdx)=cosu2xdu=2ucosudu=2(usinu(cosu))=2usinu+2cosu+C=2xsinx+2cosx+C \begin{aligned} &\int \cos ({\sqrt{x}}) dx \\ &(u=\sqrt{x}, du=\frac{1}{2\sqrt{x}}dx )\\ &= \int \cos {u} 2 \sqrt{x} du\\ &= 2\int u\cos {u} du = 2( u sin u - (-cos u) ) \\ &= 2u sin u +2 cos u +C\\ &=2\sqrt{x}\sin{\sqrt{x}} + 2 \cos{\sqrt{x}} + C \\ \end{aligned}


27. cosecxdx\int \cosec{x}dx

cosecxdx=cosecx(cosecx+cotx)(cosecx+cotx)dx(u=cosecx+cotx,du=(cosecxcotxcosec2x)dx)=1udu=lncosecx+cotx+C \begin{aligned} &\int \cosec{x} dx \\ &=\int \frac{\cosec{x}(cosec{x}+cot{x}) }{ (cosec{x}+cot{x}) } dx \\ &( u = cosec{x}+cot{x} , du = (-\cosec{x}\cot{x}-\cosec^2{x}) dx )\\ &=-\int \frac{1}{u} du \\ &=-\ln|{\cosec{x}+\cot{x}}| + C \\ \end{aligned}


28. sqrt(x2+4x+13)dx\int sqrt(x^2+4x+13) dx

x2+4x+13dx=(x+2)2+32dx(u=x+23,3du=dx)=332u2+32du=9u2+1du(u=tany,du=sec2ydy)=9secysec2ydy=9sec3ydy=9[sec(y)tan(y)sec(y)tan(y)tan(u)dy]=9sec(y)tan(y)9sec(y)(sec2y1)dy=9sec(y)tan(y)9sec3(y)dy+9secydy18sec3(y)dy=9sec(y)tan(y)+9lnsec(y)+tan(y)9sec3(y)dy=92(sec(y)tan(y)+lnsec(y)+tan(y))=92sec(y)tan(y)+92lnsec(y)+tan(y)(tany=x+23,angle=y,h=x2+4x+13,adj=3,opposite=x+2)=92x2+4x+133x+23+92lnx2+4x+133+x+23=(x+2)x2+4x+132+92lnx+2+x2+4x+133+C=(x+2)x2+4x+132+92lnx+2+x2+4x+13+C2 \begin{aligned} &\int \sqrt{x^2+4x+13} dx \\ &=\int \sqrt{(x+2)^2+3^2} dx \\ & (u=\frac{x+2}{3} , 3 du = dx) \\ &=3\int \sqrt{3^2u^2+3^2} du \\ &=9\int \sqrt{u^2+1} du \\ &(u=tan {y}, du=sec^2ydy)\\ &=9\int \sec{y} \sec^2{y} dy = 9\int sec^3y dy \\ &=9\left[sec(y)tan(y)-\int sec(y)tan(y)tan(u) dy\right] \\ &=9sec(y)tan(y)-9\int sec(y)(sec^2y-1) dy \\ &=9sec(y)tan(y)-9\int sec^3(y)dy+9\int sec y dy \\ &18\int sec^3(y)dy = 9sec(y)tan(y)+9\ln|sec(y)+tan(y)|\\ &9\int sec^3(y)dy = \frac{9}{2}(sec(y)tan(y)+\ln|sec(y)+tan(y)|)\\ &= \frac{9}{2}sec(y)tan(y)+\frac{9}{2}\ln|sec(y)+tan(y)|\\ &(tan{y}=\frac{x+2}{3}, angle=y, h=\sqrt{x^2+4x+13} , adj=3, opposite=x+2)\\ &= \frac{9}{2}\frac{\sqrt{x^2+4x+13}}{3}\frac{x+2}{3}+\frac{9}{2}\ln{|\frac{\sqrt{x^2+4x+13}}{3}+\frac{x+2}{3}|} \\ &=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|\frac{x+2+\sqrt{x^2+4x+13}}{3}|}+C\\ &=\frac{(x+2)\sqrt{x^2+4x+13}}{2} +\frac{9}{2}\ln{|x+2+\sqrt{x^2+4x+13}|}+C_2\\ \end{aligned}\\


29. e2xcosxdx\int e^{2x}*cosx dx

e2xcosxdx=e2xsinx(2e2x)(cosx)+(4e2x)(cosx)dx=e2xsinx+2e2xcosx4e2xcosxdx5e2xcosxdx=e2xsinx+2e2xcosxe2xcosxdx=15e2xsinx+25e2xcosx+C \begin{aligned} &\int e^{2x} \cos{x} dx \\ &=e^{2x} sin{x}-(2e^{2x})(-cos{x})+\int (4e^{2x})(-cos{x}) dx \\ &=e^{2x}sin{x}+2e^{2x}cos{x}-4\int e^{2x}cos{x}dx\\ &5\int e^{2x}\cos{x} dx= e^{2x}sin{x}+2e^{2x}cos{x} \\ &\int e^{2x} \cos{x} dx =\frac{1}{5}e^{2x}sin{x}+ \frac{2}{5}e^{2x}cos{x}+C\\ \end{aligned}


30. 35(x3)9dx\int_3^5 (x-3)^9 dx

35(x3)9dx(u=x3)=02u9du=[u1010]02=102.4 \begin{aligned} &\int_3^5 (x-3)^9 dx (u=x-3)\\ &=\int_0^2 u^9 du =\bigg[ \frac{u^{10}}{10} \bigg ]_0^2 \\ &=102.4 \end{aligned}


Author: crazyj7@gmail.com

'Math' 카테고리의 다른 글

Integral100 [41-50]  (0) 2019.10.21
Integral100 [31-40]  (0) 2019.10.16
Integral100 [11-20]  (0) 2019.10.13
Integral100 [1-10]  (2) 2019.10.12
integral ln gamma  (0) 2019.08.01

+ Recent posts