Hint: tan x, x=arctan subs... ∫cos3x+sin3xsin3xdx=∫1+tan3xtan3xdx,(x=tan−1y,dx=1+y21dy)=∫1+y3y31+y21dy=∫(1+y2)(1+y3)y3+1−1dy=∫(1+y2)1−∫(1+y2)(1+y3)1dy=arctan(y)−∫1+y2ay+b+1+y3cy2+dy+edya+c=0,b+d=0,c+e=0,d+a=0,b+e=1=a=−c,b=−d,c=−e,d−c=0,−c+−c=1,c=d=−b=−a,c=d=−(1/2),a=b=e=(1/2)1+y2(1/2)y+(1/2)+1+y3−(1/2)y2+(−1/2)y+(1/2)=arctan(y)−∫1+y2(1/2)y+(1/2)+1+y3−(1/2)y2+(−1/2)y+(1/2)dy=arctan(y)−21∫1+y21+ydy+21∫1+y3y2+y−1dy∫1+y21+ydy=∫1+y21dy+∫1+y2ydy=arctan(y)+21ln∣1+y2∣R=∫1+y3y2+y−1=∫1+y3y2dy+∫1+y3y−1dy∫1+y3y2dy=31ln(1+y3)y3+1=(y+1)(y2−y+1)∫1+y3y−1dy=∫y2−y+1ay+b+y+1cdya+c=0,b−c+a=0,b+c=1,a=−c,b=2cc=1/3,b=2/3,a=−1/3∫1+y3y−1dy=∫y2−y+1(−1/3)y+2/3+y+11/3dy=−31∫y2−y+1y−2dy+31∫y+11dy=−32∫y2−y+1y−21−23dy+31ln∣y+1∣∫y2−y+1y−21−23dy=∫y2−y+1y−21dy−23∫y2−y+11dy=21ln(y2−y+1)−23∫y2−y+11dy∫y2−y+11dy=∫tan2x+1−tanx1sec2xdx=∫sec2x−tanxsec2xdx=∫cos2x1−cosxsinxcos2x1dx=∫1−cosxsinx1dx=∫2−sin2x2dxy2−y+11=c1+(ay+b)2(ay+b)′=a2y2+2aby+b2+1aca/c=1,2b/c=−1,(b2+1)/ac=1,a=c=−2b(b2+1)=(4b2),3b2=1,b=±31b=−31,a=c=32y2−y+11=321+(32y−31)232∫y2−y+11dy=32∫1+(32y−31)232dy=32arctan(32y−31)R=∫1+y3y2+y−1dy=31ln(1+y3)−32(21ln(y2−y+1)−3arctan(32y−31))+31ln(y+1)R=32ln(y+1)+32arctan(32y−1)∴Q=arctan(y)−21∫1+y21+ydy+21∫1+y3y2+y−1dy=arctan(y)−21(arctan(y)+21ln∣1+y2∣)+21(∫1+y3y2+y−1dy)=21x−41ln∣1+tan2x∣+21R=21x−41ln∣1+tan2x∣+31ln∣1+tanx∣+31arctan(32tanx−1)
이렇게라도 해봤는데… 답이 안나옴…
답은 pi/4 라고 하니, 알아서 도전바람…
끈기 있게 다시 시도…
∫cos3x+sin3xsin3xdx=∫1+tan3xtan3xdx,(x=tan−1y,dx=1+y21dy)=∫1+y3y31+y21dy=∫(1+y2)(1+y3)y3dy=∫(1+y)(1+y2)(1−y+y2)y3dyy+1a+y2+1by+c+y2−y+1dy+e=y3+y2+y+1(a+b)y2+(b+c)y+(a+c)+y2−y+1dy+ey4(a+b+d)=0,y3(b+c−a−b+e+d=1),y2(a+c−b−c+a+b+e+d)=0,y(−a−c+b+c+e+d)=0,a+c+e=0a+c+e=0,−a+b+e+d=0,2a+e+d=0,−a+c+d+e=1,a+b+d=0b+d=−a,−2a+e=0,e=2a,c=−3a,d=−4a,−a−3a−4a+2a=1a=−1/6,c=1/2,e=−1/3,d=2/3,b=−1/2Q=∫y+1−1/6+y2+1(−1/2)y+(1/2)+y2−y+1(2/3)y+(−1/3)dy=−61ln(y+1)−21∫y2+1y−1dy+31∫y2−y+12y−1dy=−61ln(y+1)−21∫y2+1ydy+21∫y2+11dy+31ln(y2−y+1)=−61ln(y+1)−41ln(y2+1)+21arctan(y)+31ln(y2−y+1)x= 0 to pi/2 , y=0 to inf. y=tan(x)=21x+121(4ln(y2−y+1)−2ln(y+1)−3ln(y2+1))=21x+121ln((y+1)2(y2+1)3(y2−y+1)4)(x=0,thenQ=0)(x=π/2,thenQ=π/4,(y→∞limlnO(y8)O(y8)=ln1=0))∴Q=4πQ=21x+121ln((y+1)2(y2+1)3(y2−y+1)4)=21x+121ln((1+tanx)2(1+tan2x)3(1+tan2x−tanx)4)=21x+121ln((1+tanx)2(secx)6(sec2x−tanx)4)=21x+61ln((1+tanx)(secx)3(sec2x−tanx)2)=21x+31ln(cos2x1−cosxsinx)−61ln(cos4xcosx+sinx)=21x+31ln(1−cosxsinx)−32ln(cosx)−61ln(cosx+sinx)+32ln(cosx)=21x+31ln(1−cosxsinx)−61ln(cosx+sinx)+C
∫sec6xdx=∫sec2xsec4xdx(D(tanx)→sec2x)=sec4xtanx−∫4sec3xsecxtanxtanxdx=sec4xtanx−4∫sec4xtan2xdx=sec4xtanx−4∫sec4xsec2x−sec4xdx=sec4xtanx−4∫sec6xdx+4∫sec4xdx5∫sec6xdx=sec4xtanx+4∫sec4dx∫sec4dx=∫sec2x(1+tan2x)dx=∫sec2xdx+∫sec2xtan2xdx=tanx+∫sec2xtan2xdx∫sec2xtan2xdx(u=tanx,du=sec2xdx)=∫u2du=31u3=31tan3x5∫sec6xdx=sec4xtanx+4∫sec4dx=sec4xtanx+4(tanx+31tan3x)∴∫sec6xdx=51sec4xtanx+54tanx+154tan3x+C=51(1+2tan2x+tan4x)tanx+54tanx+154tan3x+C=51tan5x+55tanx+1510tan3x+C=51tan5x+32tan3x+tanx+C
Alternative
∫x2x2+11dx=∫tan2θsecθ1sec2θdθ(x=tanθ,dx=sec2θdθ)=∫secθcot2θdθ=∫cosθsin2θcos2θdθ=∫sin2θcosθdθ(t=sinθ,dt=cosθdθ)=∫t2dt=−t1=−sinθ1=−cscθ+C=−csc(arctanx)+C=−xx2+1+C
Alternative
cf) (x4−x2+1)(x4+x2+1)=x8−x6+x4+x6−x4+x2+x4−x2+1=x8+x4+1
부분 분수로 나눠보자. x4−x2+1x2+1=x2+ax+1c+x2+bx+1d(미지수를구한다)=x2+3x+121+x2−3x+121
따라서 적분을 취하면. ∫x4−x2+1x2+1dx=21∫x2+3x+11dx+21∫x2−3x+11dx=21∫(x+23)2+411dx+21∫(x−23)2+411dx
먼저 왼쪽 부분을 계산해 보자. 제곱의 형태를 삼각치환해 보자. (1+tan^x 꼴로 만든다.) 21tanθ=x+23 dx=21sec2θdθ
We know ∫1+x21dx=tan−1x+C. 21∫(x+23)2+411dx=21∫41tan2θ+411dx=21∫41sec2θ121sec2θdθ=θ+C=tan−1(2x+3)+C
오른쪽 부분도 같은 방식으로 계산하면 된다. 21∫(x−23)2+411dx=tan−1(2x−3)+C ∴∫x4−x2+1x2+1dx=tan−1(2x+3)+tan−1(2x−3)+C
∫csc3xsecxdx=∫sin3xcosx1dx=∫sin3xcosxcos2x+sin2xdx=∫sinxcosxcot2x+1dx=∫sinxcosxcot2xdx+∫sinxcosx1dx=∫sinxcosx1dx+∫sin2xsinxcosxcos2xdx
(이하는 아래 계산 과정과 동일)
Q∫ex+3exex−1dxu=ex−1,du=21ex−11exdx=∫u2+4u2ex−1du=2∫u2+4u2du=2∫u2+4u2+4−4du=2∫1−u2+44du=2[u−4∫u2+221du]+C=2[u−421arctan2u]+C=2u−4arctan2u+C=2ex−1−4arctan2ex−1+C
Again… Q∫ex+3exex−1dx(u=ex−1,du=exdx)=∫u+4udu(t=u,dt=2u1du,du=2udt)=2∫t2+4t2dt=2∫1+t241dt=2∫1+(t2)21dt(s=t2,t=s2,ds=−t22dt)=2∫1+s21(−2t2)ds=−∫1+s2t2ds=−∫1+s2s24ds=−4∫s2(1+s2)1ds=−4∫s21−1+s21ds=−4∫s21ds+4∫1+s21ds=−4(−1)s1+4arctans+C=t24+4arctant2+C=2t+4arctant2+C=2u+4arctanu2+C=2ex−1+4arctanex−12+CFailWhere is Incorrect?
Where is incorrect?? … No. It’s all right. arctanx1=2π−arctanx,(x>0)
So, Integration constant is ignored.